
BOSTON COLLEGE

GRADUATE SCHOOL OF ARTS AND SCIENCES

Department of Physics

A BROKEN SYMMETRY ONTOLOGY:

QUANTUM MECHANICS AS A BROKEN SYMMETRY

by

Jonathan E. Buschmann

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in the Graduate School of Arts and Sciences

July, 1988



������� ��������

��������� �������

���

���� ������� ��������������� ����������

���������� �� �������� ��������� ���������� �������� ���������� ���

�� ������� ��������� ��

���������� ��� ���� ����������� ��� ��������

��� �������� ������������ ��� ���� ������������� ���� ���� ������� ���

������� ����������������� ���� ��������� ������� ���

������� �������� ���� ����� ����� ���� ��������� ��� ���� �����������

���� ����

���� ������

����� �����
����� ���� �����

�������



© Copyright 1988 by Jonathan E. Buschmann

All rights reserved



A Broken Symmetry Ontology:

Quantum Mechanics as a Broken Symmetry

by Jonathan E. Buschmann

ABSTRACT

We propose a new broken symmetry ontology to be used to analyze

the quantum domain. This ontology is motivated and grounded in a

critical epistemological analysis, and an analysis of the basic role of sym-

metry in physics. Concurrently, we are led to consider non-heterogeneous

systems, whose logical state space contains equivalence relations not as-

sociated with the causal relation. This allows us to find a generalized

principle of symmetry and a generalized symmetry-conservation formal-

ism. In particular, we clarify the role of Noether’s theorem in field the-

ory. We show how a broken symmetry ontology already operates in a

description of the weak interactions. Finally, by showing how a bro-

ken symmetry ontology operates in the quantum domain, we account for

the interpretational problem and the essential incompleteness of quan-

tum mechanics. We propose that the broken symmetry underlying this

ontological domain is broken dilation invariance.
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I INTERPRETATION OF QUANTUM THEORY

I Interpretation of Quantum Theory

I.1 Introduction

Quantum mechanics is a theory used to describe systems in the non-

relativistic microphysical domain. It consists of a mathematical formal-

ism: a set of primitive notions and a set of axioms involving these notions.

The most important formalism from a formal and foundational viewpoint

is that due to von Neumann (1955).1 Its axioms are as follows:

This is a faithful
latex-transcribed
version of the
original whose
legacy-editor source
has been lost. It
includes some
minor typographical
corrections and two
important
corrections
indicated also as
margin notes.

Axiom I. To every system corresponds a Hilbert space H whose vec-

tors (state vectors, wave functions) completely describe the states of the

system.

Axiom II. To every observable A corresponds uniquely a self-adjoint

operator A acting in H.

Axiom III. For a system in state ϕ the probability ρA(λ1, λ2|ϕ) that

the result of a measurement of the observable A, represented by Â, lies

between λ1 and λ2 is given by |(Eλ2 − Eλ1)ϕ|2, where Eλ is a projection

operator belonging to the spectral family of A.

Axiom IV. The time development of the state vector ϕ is determined

by the equation Hϕ = iℏ∂ϕ/∂t, where H is the evolution operator.

Axiom V. If a measurement of the observable A, represented by Â,

yields a result between λ1 and λ2, then the state of the system immedi-

ately after the measurement is an eigenfunction of Eλ2 − Eλ1 .

The primitive notions included above are “system,” “observable” and

“state,” which are correlated with the (assumed understood) mathemat-

ical object of a Hilbert space and its attendant entities in axioms I and

II. The notions in axiom III of probability and measurement can also be

taken as primitive. Their meaning in the context of axiom III is open
1See also Jammer (1974), Ch.l.
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I INTERPRETATION OF QUANTUM THEORY

for interpretation and, in fact, such different meanings can yield different

interpretations of the theory of quantum mechanics.

Axiom V, often called the “projection postulate,” since in the dis-

crete case it states that the system is projected onto an eigenstate by

a measurement, is not strictly necessary for a description of quantum

phenomena, and has, in fact, been altered or discarded by some interpre-

tationists.

Other formalisms exist, most notably Dirac’s, which, because of its

brevity of notation and ease of calculation, is more widely used in prac-

tice. Still other formalisms were developed in order to make some quan-

tum mechanical phenomena easier to describe, or to support a particular

interpretation. Feynman’s path integral approach makes clearer the wave

nature of particles by emphasizing the idea of superposition in quantum

mechanics and making a connection to the classical action. The S-matrix

approach, by deemphasizing the time-development aspect of quantum

mechanics, and concentrating on the observer-system interaction, has

been used to support the similarly oriented Copenhagen interpretation.

The aim of the algebraic approach and quantum logic is to avoid the

interpretational problems of the standard formalisms by constructing a

new non-standard algebra or logic on which to build a formalism.

We now turn to the subject of interpretation. This subject is, needless

to say, a serious and complicated one for philosophers of science. Here we

outline some of the basic principles that are generally accepted concerning

the development of modern theories.2

There are several different uses of the word “interpretation.” In order

to connect a strictly mathematical formalism with observations, some of

the primitive notions of the formalism must correspond with observations
2See Jammer (1974), Ch. 1.
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I INTERPRETATION OF QUANTUM THEORY

via a set of rules. These rules are said to interpret the formalism. Most

theories contain primitive notions which are interpreted in this way and

some which are not. It is for this reason that such theories are called “par-

tially interpreted” systems. In fact, von Neumann’s formalism is already

a partially interpreted system and not a strict mathematical formalism,

by virtue of Axiom III, which provides such a rule of correspondence.

Such a partially interpreted system, however, lacks an explanatory

capability. It may faithfully represent observations—and correlations

that they infer—but it does not provide a genuine understanding of the

ontological domain it refers to. Such a system does not posses any sort of

unifying principle, and hence also lacks the ability to predict—disallowing

the discovery of as yet unknown phenomena. Providing such a unifying

principle to a system is also called an “interpretation.”

Beyond merely a unifying principle is the construction of a model.

A model can also be considered a system; however, it is a “heuristic

system” as opposed to a formal system. The relation of a model to a

partially interpreted system is like the relation of a computer program

written in a high-level language to the corresponding assembly language

program. The model provides a structure that is immediate to the mind

and demonstrates in an obvious way the self-consistency of the theory;

in other words, it provides a “picture.”

It may turn out that a particularly appealing model (i.e., one that

demonstrates a convincing cohesiveness and explanatory value) exhibits

many of the characteristics of the corresponding formalism, but not all

of them. We may then wish to change the formalism instead of changing

the model. The formalism is more amenable to such changes, whereas

- 3 -



I INTERPRETATION OF QUANTUM THEORY

the model would simply have to be discarded. This process is also given

the name interpretation.

We finally note one particular way in which an interpretation may be

found for a theory. It may be noticed that the mathematical formalism of

a theory is equivalent or very similar to another well-established theory

with an established model. The model of the established theory may

then be proposed as a model for the uninterpreted theory. This was, in

fact, the idea behind the early semi-classical interpretations of quantum

mechanics.

The “theory of quantum mechanics,” as we described it above, is a par-

tially interpreted system. Quantum mechanics is unique in the history of

physics in that this formalism was developed prior to, and independently

of, a unifying principle or model. This is the sense, then, in which quan-

tum mechanics lacks an interpretation. Many different interpretations

have been put forward since the introduction of the quantum mechan-

ical formalism. The Copenhagen interpretation, originally formulated

by Niels Bohr, is often today called the “orthodox interpretation,” but

neither it nor any other interpretation has gained general acceptance by

investigators of the foundations of physics.

What this means for the microphysical realm is that we have no gen-

erally accepted picture or “physical understanding” of this domain. The

necessity of a model is an open question, and, as we will see, the Copen-

hagen interpretation explicitly denies the possibility of constructing a

model for quantum mechanics. This would, however, be a unique case,

and prior to the advent of quantum mechanics, the possibility of the

non-existence of a model for a physical theory was never considered.

- 4 -



I INTERPRETATION OF QUANTUM THEORY

This question obviously raises epistemological issues which need to be

addressed.

The EPR Paradox

Conceptual problems in physics are often clarified and sharpened by the

construction of a so-called paradox. There have been many such para-

doxes put forward concerning quantum phenomena. The most famous

and probably the most important is the Einstein, Podolsky, Rosen (EPR)

paradox (Einstein, Podolsky, and Rosen (1935).)

The EPR paradox involves a two-level quantum system. The orig-

inal and subsequent formulations of this situation involve two particles

produced in a zero-momentum state. EPR originally considered two mi-

croscopic particles produced such that

x1 + x2 = 0, p1 + p2 = 0,

where x1, and x2 are the positions of the two particles, respectively,

and p1 and p2 are their momenta, and considered measurements of these

variables after the particles had become spatially separated. Later con-

structions more commonly used today to describe the paradox and which

have also been realized in experiment concern either two spin-1/2 particles

produced in the singlet state or two photons produced in a similar state.

We consider here a two-electron system (first considered by David

Bohm (1951),) produced as described above and allowed to become spa-

tially separated. The spin part of the state vector of this system is

- 5 -



I INTERPRETATION OF QUANTUM THEORY

ψ = 1/
√
2[n̂ ↑ (1)⊗ n̂ ↓ (2)− n̂ ↓ (1)⊗ n̂ ↑ (2)], (I.1.1)

where n̂ ↑↓ (i) describes a state in which particle i has spin “up” or

“down” along the n̂ direction. This state is spherically symmetric so n̂

can be any direction. After the particles have become separated their

spins are measured with Stern-Gerlach apparatuses set up at locations

A and B. If apparatus A is set up to measure spin along the â direction

and apparatus B along the b̂ direction, then the quantum mechanical

expectation value for the observable Aâ · Bb̂, where Aâ and Bb̂ are the

results of the measurements in units of ℏ/2, is

E(â, b̂) =< ψ|σ1 · âσ2 · b|ψ >= −â · b̂. (I.1.2)

If â||b̂ we get the expected result E(â, â) = −1; i.e., the spins of the

two electrons are anti-correlated. Since the state (I.1.1)—a state of su-

perposition of the states spin up at A, spin down at B, and spin down

at A, spin up at B—is considered to be a complete description of our

knowledge of the system, we can never predict the exact results at both

apparatuses but merely their anti-correlation. Consequently, if we mea-

sure the spin of particle 1 along the â direction, we will be able to predict

with certainty the result of a measurement made immediately afterward

on particle 2 along the â direction. According to the projection postulate,

this is because after the first measurement the system immediately en-

ters an eigenstate associated with the result of this measurement, which

is either of the two superposed states.

- 6 -



I INTERPRETATION OF QUANTUM THEORY

This may be a startling observation—that a measurement whose re-

sult is strictly undetermined becomes determined by a remote measurement—

but it does not by itself indicate a paradox: that is, a self-inconsistency

in the formalism of quantum mechanics. However, had we chosen to

measure the spin of particle 1 at A not along the â direction, but along

a direction orthogonal to â, we would have determined the result of the

measurement of the spin of particle 2 at B along this direction. To be able

to predict the spin of a particle along orthogonal directions does conflict

with the quantum mechanical formalism, however, since these are non-

commuting observables and cannot be simultaneously determined. This

is the apparent paradox. The value of this paradox is that it compels

one to further interpret the formalism.

EPR did not formulate their original argument as a paradox. It was

their intent, instead, to demonstrate that the quantum mechanical de-

scription of the microphysical domain is an incomplete one. They defined

a “complete” theory by requiring that for such a theory “every element

of the physical reality must have a counterpart in the physical theory.”

EPR’s argument proceeded as follows. They assumed the correctness

of the predictions of quantum mechanics as given by equations (I.1.1)

and (I.1.2). They assumed a criterion for the existence of an element

of physical reality: “If, without in any way disturbing a system, we can

predict with certainty (i.e., with probability equal to unity) the value

of a physical quantity, then there exists an element of physical reality

corresponding to this physical quantity.” In addition, they implicitly

assumed no action at a distance.

EPR’s conclusion that quantum mechanics is incomplete now follows

logically from their premises. Since we can predict with certainty the spin

- 7 -



I INTERPRETATION OF QUANTUM THEORY

of particle 2 along any direction without disturbing it (i.e., by measuring

the spin of particle 1,) there must exist an element of physical reality cor-

responding to the spin of particle 2 along every direction. Since quantum

mechanics does not allow the specification of the spin of a particle along

orthogonal directions, these elements of physical reality have no coun-

terpart in the theory, and quantum mechanics must be an incomplete

theory.

There have been many proposed resolutions of the EPR paradox

and/or rebuttals of their argument for the incompleteness of quantum

mechanics. We will consider some of the more important such responses

when we discuss some of the particular interpretational attempts of quan-

tum mechanics, since, as we indicated above, answering EPR’s argument

requires one to take an interpretational stance.

I.2 The Copenhagen Interpretation

As mentioned earlier, the “orthodox interpretation” of quantum mechan-

ics is the Copenhagen interpretation, also called the complementarity in-

terpretation. It was originally formulated by Bohr,3 and that version that

exists today is, for the most part, identical to Bohr’s ideas. Complemen-

tarity was put forward as a general principle by Bohr and was suggested

by him and by others to be applicable to many other disciplines. We

shall be mostly concerned, however, with the application of the principle

to quantum mechanics as a possible interpretation. Briefly, the abstract

principle of complementarity applies to a situation which can admit two

descriptions which completely contradict and exclude one-another. Of

course, these two descriptions cannot be applied “simultaneously” to the
3See, for instance, Jammer (1974), Ch.4.
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I INTERPRETATION OF QUANTUM THEORY

situation at hand. Rather, only one description can be chosen, but which

one can be used is indeterminate until chosen.

The need for this principle in quantum mechanics, according to Bohr,

is due to the breakdown of the classical ideal of explanation in the mi-

crophysical realm—as exemplified by the indeterministic character of

the predictions of quantum mechanics and the consequent wave-particle

dualism—and the simultaneous need to express observations in classi-

cal terms. Thus different “complementary” classical concepts need to be

applied to the same quantum phenomenon at different times. Gener-

ally, these complementary classical descriptions are a causal description

and a space-time description. This accounts for the necessarily different

forms of time development in quantum mechanics as given by the fourth

and fifth axioms of von Neumann; i.e., the causal time development as

described by Schrödinger’s equation and the space-time description as

given by the projection postulate. The Schrödinger equation affords a

causal description of the time development of the state ψ, but ψ is not

an observable object. To obtain a space-time description of the system

associated with ψ, we must make a measurement on the system, but by

doing so we introduce an “uncontrollable element” of disturbance, thereby

destroying the causal description.

It should be noted that it is often claimed that there is also a kind of

complementarity between the concepts of position and momentum and

between the concepts of wave and particle. Although this position is held

by some members of the Copenhagen school,4 Bohr rejected these claims,

since for him it is not the formalism or concepts of quantum mechanics
4C.F. von Weizsacker called this “parallel complementarity.” See Jammer (1974),

Ch. 4.
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I INTERPRETATION OF QUANTUM THEORY

that stand in complementary relation, but only phenomena—requiring

mutually exclusive classical “pictures”—can be complementary.

As we will discuss now, Bohr’s reply (Bohr, 1935) to the EPR argu-

ment provides us with a bit clearer view of his complementarity interpre-

tation. In his criticism of EPR’s argument, Bohr explicitly rejected one

of their premises, namely the reality criterion. In particular, he consid-

ered ambiguous EPR’s claim that there existed an element of physical

reality if one “can predict” the value of a quantity. For EPR the actual

choice of the particular quantity to measure in a particular experiment

is inconsequential to the physical character of the system at hand. In

the quantum realm, however, Bohr claimed, it makes no sense to talk

about the state of a system without reference to an experimental setup.

For Bohr, the non-commutivity of the observables chosen by EPR to

measure, and, hence, quantum theory’s inability to specify values for

both simultaneously, is just a direct reflection of the complementary de-

scriptions needed to express each; consequently, different and mutually

exclusive experimental procedures are required to measure these observ-

ables, since it is by these procedures and their results that we communi-

cate these descriptions. Furthermore, any definition of physical reality in

the microphysical domain must take this into account by acknowledging

that it is only the object under investigation plus the measuring appa-

ratus which can be considered the essential system in any ontological or

epistemological analysis; any further “dissectional” analysis is necessarily

ambiguous.

It is clear now from the rejection of the EPR reality criterion and the

claim of an inseparable object-instrument description of quantum phe-

nomena that the Copenhagen interpretation does not interpret quantum

- 10 -



I INTERPRETATION OF QUANTUM THEORY

mechanics in the sense in which we claimed earlier quantum mechanics

was lacking an interpretation; i.e., in the sense of a model. At the same

time, however, these same positions obviously also prohibit the possibility

of constructing a model for the microphysical domain. The Copenhagen

interpretation, instead of interpreting in this sense tries to make more

palatable “strange” non-classical phenomena and attempts to synthesize

classical descriptions with these phenomena; nevertheless, it asks us to

accept these phenomena prima facie.

As a consequence of this aspect of the Copenhagen interpretation, it

is impossible to criticize it on physical grounds. It can only be criticized

on the basis of its epistemological foundations or lack thereof. This we

will take up in the next chapter.

I.3 Hidden-Variable Theories

One interpretation follows directly from the acceptance of the conclusions

of EPR’s incompleteness argument. This idea is that quantum mechanics

needs to be completed—that is, supplanted by a theory which logically

includes the quantum mechanical formalism but also satisfies EPR’s cri-

terion for a complete theory. Such theories (theories, since they propose

to alter (i.e., add to) the formalism of quantum mechanics) are called

hidden variable theories, or, more specifically, local hidden variable the-

ories (LHTV), if they reject action at a distance. The idea behind these

theories is that the state description of quantum mechanics needs to be

supplanted by additional variables, which will complete the state descrip-

tion (in the sense in which EPR showed it to be incomplete), but which

are hidden from observation and can in principle remain so.

- 11 -



I INTERPRETATION OF QUANTUM THEORY

The significance of these theories, even though, as first proposed, they

could be experimentally indistinguishable from quantum mechanics, is

that they allow one to retain EPR’s reality criterion and ascribe our

inability to measure and know, for instance, the simultaneous value of

the spin of an electron along different directions, as merely that, a lack of

knowledge. We are, then free to reject the Copenhagen interpretation’s

position that these values of spin are only definable with respect to an

experimental arrangement and the subsequent measurement made with

this apparatus.

Here, we will not consider any specific LHVT, although there have

been such theories put forward.5 Rather, we will present the startling

result of Bell (1965), that the whole class of LHVT can be shown to have

experimentally measurable differences with quantum mechanics.

Bell’s Theorem

Consider, once again, the Bohm-EPR experiment with two electrons.

The quantum mechanical description and predictions for measurements

made on this system is given by equations (I.1.1) and (I.1.2).6

We consider now the description and predictions made by LHVT.

Such theories will be defined as assuming the realism criterion7 and a

locality (no action at a distance) condition. The realism criterion is

satisfied by replacing ψ, the quantum mechanical state, by a local realistic

state λ (i.e., one that provides a complete description as explained above)

with a distribution function ρ over a space Λ, so that
5See, for instance, Belinfante (1973) for a review.
6Chapter and section numbers on equations will only appear when the equations

are in different sections or chapters.
7See Section I.1.
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I INTERPRETATION OF QUANTUM THEORY

ˆ
Λ

dρ = 1 (I.3.1)

The locality assumption is implemented by assuming measurements made

on the two individual particles yield results that are independent of the

measurement made on the other particle; i.e.,

(Aâ ·Bb̂)(λ) = Aâ(λ) ·Bb̂(λ). (I.3.2)

The expectation value complement of equation (I.1.2) is then

E(â, b̂) =

ˆ
Λ

Aâ(λ)Bb̂(λ)dρ. (I.3.3)

We further assume the strict anti-correlation between the measurements

made on the two electrons when their spin is measured along the same

direction:

Aâ(λ) = −Bâ(λ). (I.3.4)

Now consider measurements made on the two electrons along different

directions. Consider three different orientations of the Stern-Gerlach

apparatuses â, b̂, and ĉ. We can write

- 13 -



I INTERPRETATION OF QUANTUM THEORY

E(â, b̂)− E(â, ĉ) =
ˆ
Λ

[Aa(λ)Bb̂(λ)− Aâ(λ)Bĉ(λ)]dρ

= −
ˆ
Λ

[Aâ(λ)Ab̂(λ)− Aâ(λ)Bĉ(λ)]dρ,

using equation (I.3.4), and

E(â, b̂)− E(â, ĉ) = −
ˆ
Λ

Aâ(λ)Ab̂(λ)[1− Ab̂(λ)Bĉ(λ)]dρ,

since |Ab̂| = 1. We next take the absolute value of both sides of this

equation and, by taking the absolute value inside the integral, obtain an

inequality:

|E(â, b̂)− E(â, ĉ)| ≤
ˆ
Λ

[1− Ab̂(λ)Bĉ(λ)]dρ

|E(â, b̂)− E(â, ĉ)| ≤ 1 + E(b̂, ĉ), (I.3.5)

where we have used equations (I.3.1) and (I.3.3). This is “Bell’s inequal-

ity.” Quantum mechanics can yield results in conflict with this inequality.

In particular, choose â · b̂ = b̂ · ĉ = 1/2 and â · ĉ = −1/2. From equation

I.1.2 we find

|E(â, b̂)− E(â, ĉ)| = 1 Q.M.

and

- 14 -



I INTERPRETATION OF QUANTUM THEORY

1 + E(b̂, ĉ) = 1/2, Q.M.

in obvious violation of the inequality (I.3.5).

This result—that all local realistic theories are in conflict with quan-

tum mechanics, or that quantum mechanics cannot be subsumed as

part of a local realistic theory—is known as Bell’s theorem. Other

inequalities—also called Bell inequalities—which allow for non-100% ef-

ficient detectors, and so are more useful for comparison to actual exper-

iments, have been derived.8 Experiment has overwhelmingly vindicated

quantum mechanics and has thereby eliminated LHTV as viable alter-

native theories.9 It also indicates that we must give up either locality or

realism in the microphysical domain.

The newer inequalities were also necessarily derived under a broader

assumption of locality. Whereas Bell’s original assumption was that the

state λ determined exactly the outcome of any measurement on the sys-

tem (therefore, λ is to be considered a state of a “deterministic hidden

variable theory”), the broader locality conditions assume that the state

λ can evolve stochastically (thereby defining a “stochastic hidden vari-

able theory”) and/or that measurements can depend locally on random

variables associated with the measuring apparatuses (“contextual hid-

den variable theory.”) Since it is these inequalities that have been tested

against, it is worthwhile to investigate this assumption behind them more

closely to determine exactly what one must give up in light of the ex-
8See Clauser and Shimony (1978) for a review.
9See Clauser and Shimony (1978) and Aspect et al. (1982).
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I INTERPRETATION OF QUANTUM THEORY

perimental results. We consider then a clarifying examination of this

question by Jon Jarrett.

Jarrett’s Work

Jarrett (1984) showed that the locality condition used in deriving most

Bell inequalities is equivalent to two simpler conditions. He also carefully

explicated what accepting or rejecting each of these conditions entails.

We, once again, consider the Bohm-EPR setup. We assume that any

theory which correctly describes this experiment assigns a state descrip-

tion to the two electrons which yields a unique joint probability function

(d1, x1; d2, x2)
10 for the result x1 from a measurement of the spin of elec-

tron 1 along the direction d1, and the result x2 from a measurement of the

spin of electron 2 along the direction d2. As usual, we express the results

of spin measurements in units of ℏ/2 so that xi = ±1. This probability

function is subject to the following obvious normalization requirements:

∑
x1

(d1, x1; 0, 0) = 1 (I.3.6a)

∑
x2

(0, 0; d2, x2) = 1 (I.3.6b)

∑
x1,x2

(d1, x1; d2, x2) = 1, (I.3.6c)

where zeros indicate no measurement is made.

Jarrett defined the condition of “locality” by the conditions
10We use a much briefer notation than Jarrett. Wc do not exhibit those character-

istics of the joint probability function due to other possible variables.
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(d1, x1; 0, 0) =
∑
x2

(d1, x1; d2, x2) (I.3.7a)

(0, 0; d2, x2) =
∑
x1

(d1, x1; d2, x2). (I.3.7b)

Any theory which satisfies these conditions is said to be “local.” These

conditions state that the result of a measurement on electron i can de-

pend only on the state it is in and on the state of the measuring device

i (where the state of the measuring device is allowed to be specified by

other variables in addition to di.) More to the point, such a measure-

ment cannot depend on the state of the other, remote, measuring device.

For this reason (as Jarrett explicitly proved) the locality condition pro-

hibits the transmission of any information superluminally with an EPR

setup. Hence, we may also call this condition “Einstein locality.” It is

also important to note that, although this condition does not allow a

measurement to depend on the state of a remote measuring device, it

need not be stochastically independent of the outcome of a measurement

at the other measuring device.

This last observation leads to the next condition Jarrett defined.

“Completeness” is defined by

(d1, x1; d2, x2) =
∑
x′
2

(d1, x1; d2, x
′
2) ·

∑
x′
1

(d1, x
′
1; d2, x2). (I.3.8)

A theory is a “complete” theory if and only if it satisfies equation (I.3.8).

In words, equation (I.3.8) says that our joint probability can be written as

the product of two separate probabilities, each of which has the results
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at one detector “summed out.” This condition demands exactly what

Einstein locality does not—it demands the stochastic independence of

the outcomes of measurements at the two Stern-Gerlach apparatuses.

This condition of completeness does allow a measurement to depend on

the state of the two-particle system and on the states of both measuring

devices. We will refer to this condition later as Jarrett completeness.

“Strong locality” is defined by

(d1, x1; d2, x2) = (d1, x1; 0, 0) · (0, 0; d2, x2). (I.3.9)

A theory is said to be “strongly local” if it satisfies this condition. Condi-

tion (I.3.9) is just a statement of ordinary probabilistic independence—

i.e., the joint probability can be written as a product of the two separate

probabilities. This condition can be seen to reduce to Bell’s original

locality condition for deterministic theories, equation (I.3.2). Strong lo-

cality is also equivalent to the usual locality condition used in deriving

the general Bell inequalities.

Jarrett next showed that equation (I.3.9) is logically equivalent to

the conjunction of conditions (I.3.7) and (I.3.8). First, assume strong

locality; then,

∑
x2

(d1, x1; d2, x2) = (d1, x1; 0, 0) · [
∑
x′
2

(0, 0; d2, x
′
2)]

= (d1, x1; 0, 0)

by equation (I.3.6b). Similarly,

- 18 -



I INTERPRETATION OF QUANTUM THEORY

∑
x1

(d1, x1; d2, x2) = (0, 0; d2, x2).

So, all strongly local theories are local. Also,

∑
x′
2

(d1, x1; d2, x
′
2) ·

∑
x′
1

(d1, x
′
1; d2, x2)

= (d1, x1; 0, 0) · [
∑
x′
2

(0, 0; d2, x
′
2)] · [

∑
x′
1

(d1, x
′
1; 0, 0)] · (0, 0; d2, x2)

= (d1, x1; 0, 0) · (0, 0; d2, x2)

= (d1, x1; d2, x2),

where in the second step we have used equations (I.3.6a) and (I.3.6b).

So all strongly local theories are complete.

Now, assume locality and completeness. We find

(d1, x1; d2, x2) =
∑
x′
2

(d1, x1; d2, x
′
2) ·

∑
x′
1

(d1, x
′
1; d2, x2)

from equation (I.3.8) and

(d1, x1; d2, x2) = (d1, x1; 0, 0) · (0, 0; d2, x2)

from equations (I.3.7). Hence, all local complete theories are strongly

local, completing the proof.
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Experimental evidence can be taken as counting against strong lo-

cality. We must then give up either Einstein locality or Jarrett com-

pleteness as principles operating in the microphysical domain. Einstein

locality is a well established physical principle; a principle not easily given

up without contravening much independent experimental evidence. We

are, therefore, compelled to sacrifice Jarrett completeness in the micro-

physical domain. Quantum mechanics is, of course, in agreement with

experiment and, hence, violates strong locality and, we deduce, Jarrett

completeness.

Why does Jarrett call this condition of stochastic independence of

joint measurement outcomes completeness? First, we note that any de-

terministic theory automatically satisfies completeness; crudely speaking,

a deterministic theory, by definition, does not yield probabilistic state

descriptions, so results of joint measurements must be stochastically in-

dependent.11 Now, a theory which yields a stochastic state description

of our two-electron system which allows for a measurement result on one

electron to be conditionalized on the outcome of a measurement on the

other electron, obviously does not contain information which is predic-

tively relevant for the outcome of this measurement. We see, then, that

Jarrett completeness is a generalization for stochastic theories of the EPR

completeness criterion.

A theory which correctly describes the microphysical domain (such

as quantum mechanics) must yield state descriptions which are Jarrett

incomplete. Hence, to say a theory does not satisfy Jarrett completeness

is not to say it can be “completed.” In Jarrett’s words, “Although the

term ‘incompleteness’ may connote a defect (as if all incomplete theories
11Hence, assuming Einstein locality, deterministic hidden variable theories are au-

tomatically strongly local.

- 20 -



I INTERPRETATION OF QUANTUM THEORY

may be ‘completed’), incomplete theories (e.g., quantum mechanics) are

by no means ipso facto defective.” Let us call a theory which does not

satisfy Jarrett completeness and is the correct theory of its domain an

“essentially incomplete” theory, meaning that there is no correct complete

theory of that domain. Any theory of the microphysical domain must

then be essentially incomplete.

I.4 Stochastic Interpretations

It was noticed quite early in the development of quantum mechanics

that there existed strong similarities between Schrödinger’s equation and

equations of stochastic theories, such as brownian motion. In particular,

formal analogies were drawn between the diffusion equation and the one-

dimensional Schrödinger equation, and between the Heisenberg relations

and similarly derived uncertainty relations with the diffusion coefficient

replacing ℏ.12

In the late sixties, L. de la Pena-Auerbach et al. (1967, 1968a, 1968b),

in a series of papers, demonstrated that there exists a possible “isomor-

phism” between non-relativistic quantum theory and the stochastic the-

ory of Markov processes. He also showed that from this markovian-

quantum theory, he could extract quantum formalism that is added in a

much less natural way to the standard quantum theory. We will try to

explicate some of the fundamental ideas and approaches of de la Pena-

Auerbach’s work, after first introducing some of the basic formalism of

Markov processes that is needed for this approach.
12See Jammer (1974), Ch. 2, for a history of these theories.
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Markov Processes

The theory of Markov Processes13 concerns a stochastic description of

a given arbitrary distribution of particles with the assumption that the

probabilities of the dynamical variables (such as position or velocity) of

any given particle do not depend upon the entire past history of the

particle. It is assumed, rather, that these probabilities are determined if

one knows particular values of the variables at some particular point in

the past.

For a Markov process, then, we speak of the conditional probability,

which we designate as ρ (also called the probability density), that given

the value, say x0, for the position of a particle at t = 0, one will find the

value for the position between x and x+ dx at time t. Symbolically,

ρ = ρ(x0|x, t). (I.4.1)

We now find a condition that this probability must satisfy by looking at

how it changes in time. First, we have

[(∂/∂t)ρ(x0|x, t)]∆t = ρ(x0|x, t+∆t)− ρ(x0|x, t). (I.4.2)

We rewrite the first term on the right by making use of an identity from

elementary probability theory, namely,
13See, for instance, Jammer (1974), pp. 437-8, Pathria (1978), pp. 462-3, Reif

(1965), pp. 577-80, Wang and Uhlenbeck (1945).
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ρ(x0|x, t+∆t) =

ˆ
dx1ρ(x0|x1, t)ρ(x1|x,∆t), (I.4.3)

which is known as the Smolchowski equation. We now have for equation

(I.4.2):

(∂ρ/∂t)∆t =

ˆ
dx1ρ(x0|x1, t)ρ(x1|x,∆t)− ρ(x0|x, t). (I.4.4)

Parenthetically, we remark that this equation can be interpreted as saying

that the change in probability is due to two sources. The first term on

the right represents the probability of particles moving into x, x + dx

from any x1, x1 + dx1 during a time ∆t, times the probability that they

were in x1, x1+dx1 at the time t (thus increasing ρ(x0|x, t).) The second

term represents a loss of particles from ρ(x0, |x, t) during ∆t into, say,

any x1, x1 + dx1, since ρ(x0|x, t) is the probability that a particle was at

x, x + dx at time t (and must, therefore, have moved out during time

∆t.)

Next, we let x1 ≡ x− ξ, so that equation (I.4.4) becomes

(∂ρ/∂t)∆t =

ˆ
dξρ(x0|x− ξ, t)ρ(x− ξ|x,∆t)− ρ(x0|x, t). (I.4.5)

We note that ξ ≡ x− x1 represents the “distance” between states x and

x1. We now expand the integrand of equation (I.4.5) in a Taylor series,

in powers of x1 − x = −ξ about the point x1 = x:

- 23 -



I INTERPRETATION OF QUANTUM THEORY

ρ(x0|x−ξ, t)ρ(x−ξ|x,∆t) =
∑
n

(−ξn/n!)(∂n/∂xn1 )[ρ(x0|x−ξ, t)ρ(x−ξ, t)ρ(x−ξ|x,∆t)]x,

and, since

(∂/∂x1)[f(x1)]x = (∂/∂x)[f(x)],

equation (I.4.5) becomes

(∂ρ/∂t)∆t =
∑
n

(−1n/n!)(∂n/∂xn)[ρ(x0|x, t)
ˆ
dξξnρ(x|x+ξ,∆t)]−ρ(x0|x, t).

(I.4.6)

First, we note that the n = 0 term in the sum is equivalent to

ρ(x0|x, t)
ˆ
dx1ρ(x|x1,∆t),

and, since ρ(x|x1,∆t) must be properly normalized, i.e.,

ˆ
dx1ρ(x|x1,∆t) = 1,

we see that this term cancels with our last term in equation (I.4.6). Next,

to simplify equation (I.4.6), we define the “nth moment of coordinate

change” during ∆t as
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an ≡ (1/∆t)

ˆ
dξξnρ(x|x+ ξ,∆t). (I.4.7)

Using this in equation (I.4.6), we have for our rate of change of ρ:

∂ρ/∂t =
∑
n

(−1n/n!)(∂n/∂xn)[anρ(x0|x, t)]. (I.4.8)

Next, we will assume what may be called the “Brownian motion ap-

proximation” by considering the particle of interest to be on a different

scale than the particles constituting its environment—to be “relatively

macroscopic” to the other particles. This is the approximation normally

made in analyses of Brownian motion, but is, of course, a critical one for

our discussion. We will discuss this assumption in more detail later.

The point of this assumption is that it allows us to assume that ξ, the

size of our jump between x, and x, must be small during the “small” time

interval ∆t. ∆t is considered “macroscopically infinitesimal.” With this

approximation, we ignore terms in equation (I.4.8) higher than order 2.

Finally we have

∂ρ/∂t = −(∂/∂x)(aρ) + (1/2)(∂2/∂x2)(bρ), (I.4.9)

where we have set a1 = a and a2 = b. Equation (I.4.9) is known as the

Fokker-Planck equation.

We will now need to generalize this equation for an n-dimensional

Markov process:
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∂ρ/∂t =
∑
i

(∂/∂xi)[aiρ+
∑
k

(∂/∂xk)(bikρ)], (I.4.10)

where ai, and bik, are defined similarly to a and b (−1/2 has been absorbed

into bik.) It can be shown that ai = ki/β is the ith component of the

external force per unit mass, k, divided by β, the friction coefficient and

also that bij is the diffusion tensor.

We next recall the equation of continuity representing conservation

of total probability,

(∂ρ/∂t) +∇ · j = 0, (I.4.11)

which can also be written as

(∂ρ/∂t) +
∑
i

(∂/∂xi)ji = 0. (I.4.12)

Substituting for the left side of equation (I.4.10) from equation (I.4.12),

we find

−
∑
i

(∂/∂xi)ji = −
∑
i

(∂/∂xi)[aiρ+
∑
k

(∂/∂xk)(bikρ)]

or
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ji = aiρ+
∑
k

(∂/∂xk)(bikρ). (I.4.13)

Also, since,

j ≡ vρ, (I.4.14)

where v is the macroscopic, or flow velocity of the particle, we have from

equation (I.4.13)

vi = ai + (1/ρ)
∑
k

(∂/∂xk)(bikρ). (I.4.15)

These equations, (I.4.10) through (I.4.15), are the stochastic equations

we will need to examine de la Pena-Auerbach’s work.

de la Pena-Auerbach’s Derivation of the Schrödinger

Equation

In the first stage of de la Pena-Auerbach’s work, he derived a Schrödinger

equation by starting with a description of the motion of a particle in the

context of Markov theory. First, we can write ρ(x, t), our probability

density in configuration space for the stochastic variable x(t), as

ρ = e2R, (I.4.16)
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where R = R(x, t) is real, since ρ is positive definite. Using equation

(I.4.16) in our equation of continuity (I.4.11) along with equation (I.4.14),

we find

2(∂R/∂t) +∇ · v + 2v · ∇R = 0

or,

∂R/∂t = −(1/2)∇ · v − v · ∇R = 0, (I.4.17)

where vi is given by equation (I.4.15). We now assume that v can be

written as the gradient of a real function, S(x, t),

v = α∇S, (I.4.18)

which is equivalent to assuming that the external force is conservative.

α is a real undetermined constant, that in some way characterizes the

system. To obtain a Schrödinger-type equation, we introduce the field

variable ψ,

ψ = eR+iS, (I.4.19)

so that ρ = |ψ|2; i.e., ψ acts as the probability amplitude. We notice

that equation (I.4.17), which is a differential relation between R and
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∇S = α−1v, can provide us with a differential equation for ψ. To this

end, we multiply equation (I.4.17) by ψ to get

ψ(∂R/∂t) = −(1/2)αψ∇2S − αψ∇S · ∇R, (I.4.20)

where we have used equation (I.4.18). To eliminate derivatives of R and

S in favor of ψ, we compute

∂ψ/∂t = ψ[(∂R/∂t) + i(∂S/∂t)]

or,

ψ(∂R/∂t) = (∂ψ/∂t)− iψ(∂S/∂t)

and

∇2ψ = ψ(∇R + i∇S) · (∇R + i∇S) + ψ(∇2R + i∇2S)

= ψ[(∇R)2 − (∇R + i∇S) + ψ(∇2R + i∇2S)

or

ψ∇2S = −i∇2ψ + iψ[∇2R + (∇R)2 − (∇S)2] + 2ψ∇S ·∇R.

Using these relations in equation (I.4.20), we get
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(∂ψ/∂t)−iψ(∂S/∂t) = (1/2)iα∇2ψ−(1/2)iα[∇2R+(∇R)2−(∇S)2]ψ.

(I.4.21)

By defining a new function V (x, t), such that

V = −(∂S/∂t) + (1/2)α[∇2R + (∇R)2 − (∇S)2], (I.4.22)

we finally get

i(∂ψ/∂t) = −(1/2)α∇2ψ + V ψ. (I.4.23)

If we want this equation to describe the motion of a real particle with

mass, m, then our constant α = γ/m, where γ is now an undetermined

constant. If we finally set γ = ℏ, then we have the Schrödinger equation.

Setting the value of this constant is an independent postulate, but that is

so in standard quantum theory also. For now, we will leave this constant

arbitrary.

What has been shown, therefore, is that a particle that obeys stochas-

tic laws (namely equations (I.4.11) and (I.4.18)), and whose flow velocity

is given in the Brownian motion approximation by equation (I.4.15), can

be described by a Schrödinger-like equation, with a complex probability

amplitude whose norm is the stochastic probability density.
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Derivation of Brownian Motion Equation from Schrödinger’s

Equation

To demonstrate the full relationship between Schrödinger’s equation and

the Brownian motion equation (I.4.10), de la Pena-Auerbach took the

reverse course and derived an equation of type (I.4.10) starting from

Schrödinger’s equation. Then, starting with

iℏ(∂ψ/∂t) = −(ℏ2/2m)∇2ψ + V ψ (I.4.24)

and writing ψ as

ψ = eR+iS,

where R and S are real functions of the coordinates and time, we find

iℏ[(∂R/∂t)+i(∂S/∂t)] = −(ℏ2/2m)[(∇R)2−(∇S)2+2i∇S·∇R+∇2R+i∇2S]+V

or,

∂R/∂t = −(1/2)α∇2S − α∇R ·∇ S (I.4.25)

and
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∂S/∂t = −(1/2)α∇2R− (1/2)α[(∇R)2 − (∇S)2] + (V/ℏ), (I.4.26)

where we have set α = ℏ/m. We will discuss the significance of equation

(I.4.26) later.

Taking equation (25) and multiplying through by the integrating fac-

tor e2R we get

(∂/∂t)e2R = −α∇· [e2R∇S].

Letting ρ = e2R = |ψ|2, we finally have

(∂ρ/∂t) +∇·[αρ∇S] = 0, (I.4.27)

which is of the form of a continuity equation. It is this equation that can

be written in the form of equation (I.4.10). To show this, we introduce

a new function Q,

Q = R + S. (I.4.28)

Equation (I.4.27) then becomes

(∂ρ/∂t) +∇·[αρ(∇Q−∇R)] = 0
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or

(∂ρ/∂t) +∇·[αρ∇Q− (1/2)α∇ρ] = 0, (I.4.29)

where we have made use of ρ = e2R. To identify this with equation

(I.4.10), we see we must have

α∇Q = a = k/β (I.4.30)

and

α/2 = −b ≡ D, (I.4.31)

where, to make the last identification, we have assumed that the diffusion

tensor bij = −δijD; i.e., it is isotropic. To come to the conclusion, how-

ever, that equation (I.4.29) is a Brownian motion equation (that is, that

Schrödinger’s equation implies a stochastic process), we must accept the

approximation made in deriving equation (I.4.10) earlier, the one which

we stressed. This approximation is equivalent to assuming that the time

interval of interaction, ∆t, is large compared to the relaxation time of the

medium. This relaxation time in Brownian motion theory is proportional

to β−1, the inverse of the friction coefficient already introduced in the

above work. This restriction, though, is not contained in Schrödinger’s

equation, since it is valid for all time intervals. We postulate, then, fol-
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lowing de la Pena-Auerbach, that the condition ∆t >> β−1or ∆tβ >> 1

is an oversimplified version of the time-energy uncertainty relation.

To see this connection, we use equation (I.4.30) as

mk = mβα∇Q.

Since mk is the external force, we may write, roughly,

∆E ∼ αβm∆Q,

since mk can be written as the gradient of a potential. Using β∆t >> 1

in the above equation, we get

|∆E|∆t ≥ ℏ∆Q ∼ ℏ. (I.4.32)

What is being claimed, then, is that the restriction ∆t >> β−1 must be

also placed on Schrödinger’s equation, and it is, in fact, valid only over

time intervals satisfying this restriction.

This “two-way” derivation has shown that there exists an intimate

connection between quantum mechanics and stochastic theory. It has

also enabled us to make the identifications (I.4.30) and (I.4.31), thus

determining the constant α and giving us a relation between the applied

forces k and the parameters of our stochastic processes. We will proceed

from this point, then, and show how further formalism analogous to
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that of quantum mechanics is developed quite naturally, and we will also

examine the physical content of this formalism.

Further Analysis

If f̂ indicates any operator, then we define

< f̂ >AV≡
ˆ
f̂ρdr (I.4.33)

and

< f̂ >≡
ˆ
ψ∗f̂ψdr (I.4.34)

as its mean and expectation values, respectively. Equation (I.4.15) can

be written, using equations (I.4.31) and (I.4.18), as

v = a− (D/ρ)∇ρ = α∇S, (I.4.35)

or, substituting for ρ,

v = a− 2D∇R. (I.4.35a)

If we now define the operator v̂ by

v̂ ≡ a−D∇, (I.4.36)
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we will have

v̂ρ = vρ. (I.4.37)

Next we define p̂ as

p̂ ≡ −imα∇ = −2imD∇. (I.4.38)

The mean value of p̂ is

< p̂ >AV= −2imD
ˆ

∇ρ · dr,

so

< p̂ >AV= 0, (I.4.39)

since the integral can be written as a surface integral and ρ must vanish

at infinity. In the same way, from equation (I.4.36) we get

< v̂ >AV= ā = k̄/β, (I.4.40)

which says that the mean value of the flow velocity of the particle is

proportional to the mean value of the force per unit mass acting on it.
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To calculate the expectation value of p, we substitute in equation

(I.4.34)

< p̂ > = −2imD
ˆ
ψ∗∇ψ · dr

= −2imD
ˆ
ψ∗(∇R + i∇S)ψ · dr

= −2imD <∇R > +2mD <∇S >,

but since p̂ must be Hermitian,

<∇R >= 0, (I.4.41)

and, since from equation (I.4.35)

<∇S >=< v > /2D,

we get

< p̂ >=< mv >=< mv >AV≡ mv̄. (I.4.42)

This last equation allows us to interpret p̂ as the momentum operator,

since its expectation value is equal to the mean flow of the momentum

associated with the particle.

Next we introduce the operator Ê,
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Ê ≡ 2imD(∂/∂t). (I.4.43)

Computing < Ê >, we get

< Ê >= −2mD < ∂S/∂t >, (I.4.44)

where, as above, < ∂R/∂t >= 0 because of the Hermicity of Ê.

We now look at the extra equation that we obtained from our second

derivation, equation (I.4.26). This equation can be written as

− < ∂S/∂t >= D < (∇S)2 − (∇R)2 −∇2R > + < V > . (I.4.45)

We also notice that

< p̂2 >= −(2mD)2 < ∇2R + (∇R)2 − (∇S)2 > . (I.4.46)

Combining equations (I.4.45), (I.4.46) and (I.4.44), we find

< Ê >=< p̂2/2m+ V >=< Ĥ >, (I.4.47)

where Ĥ ≡ p̂2/2m+V is the Hamiltonian operator. In turn, we interpret

Ê as the energy operator. However, we can also write equation (I.4.45),

using equation (I.4.44), and (I.4.35) for ∇S as
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< Ê >=< (1/2)mv2 + V + ϕB >, (I.4.48)

where

ϕB = −2mD2[(∇R)2 +∇2R] (I.4.49)

is called Bohm’s potential. It might be thought that, in this context, the

expectation value of the energy operator can be interpreted as the sum

of the average kinetic energy of the flow, < (1/2)mv2 >, plus an effective

potential, V + ϕB, as has been done in earlier stochastic interpretations,

when the term ϕB, has occurred. However, if we compute the expectation

value for ϕB and use equation (I.4.35) to find

(mv)2 = 4D2(∇S)2,

along with our expression (I.4.46) for < p̂2 >, we get

< ϕB >= (1/2m) < p̂2 − (mv)2 > . (I.4.50)

We see that < ϕB > is actually just the difference between the total

kinetic energy and the kinetic energy of the flow. In other words, it is

the mean stochastic kinetic energy.

This questionable potential does point out, though, that we may

look at the total energy in an alternative way—one that emphasizes the
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stochastic nature of our formalism. Since a has the dimensions of veloc-

ity and is proportional to the applied force (a = β−1k), we may speak of

it as an applied velocity and designate it u. Doing this, we notice from

equation (I.4.35a) that

u = β−1k = 2D∇R + v,

or

∇R = −(1/2D)(v − u). (I.4.51)

Using this result, ϕB can be written as

ϕB = −2mD2[(4D2)−1(v − u)2 − (2D)−1 ∇· (v − u)]

= −(1/2)m(v − u)2 +mD∇· (v − u). (I.4.52)

We can now write the energy as

< Ê >=< (1/2)mv2−(1/2)m(v−u)2+mD∇·(v−u)+V > . (I.4.53)

This equation can easily be put in the form of Euler’s equation for an

ideal fluid, but as de la Pena-Auerbach pointed out, this does not lead

to any deeper physical meaning. Instead, it just reflects that the nature

of our starting basic equations was hydrodynamic.
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To explain the nature of his formalism, de la Pena-Auerbach sug-

gested that the stochastic behavior of a quantum particle is due to its

interaction with the vacuum. In this case then β, which is normally a

friction coefficient in stochastic theory, gives a measure of the interaction

of the quantum particle with the vacuum. However, we should note that,

from the Bell’s theorem results of the last section, any such solution will

require there to be a non-local aspect to this medium.

I.5 The Quantum Potential Approach

An interpretation that is in some ways similar to the stochastic approach

discussed in the last section is the quantum potential approach. This

approach was originated by de Broglie shortly after the formulation of

quantum mechanics. It was taken up many years later by Bohm (1952a,

1952b) who continues to strongly advocate it today (Bohm and Hiley

(1975, 1984, 1985)).

If we take Schrödinger’s equation for a single particle

iℏ∂ψ/∂t = −(ℏ2/2m)∇2ψ + V ψ

and let

ψ = ReiS/ℏ, (I.5.1a)

P = R2, (I.5.1b)

where R and S are real functions of the coordinates, then we have
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iℏ[∂R/∂t+ (i/ℏ)R(∂S/∂t)] = −(ℏ2/2m)[∇2R + 2(i/ℏ)∇R ·∇ S

+ (i/ℏ)R∇2S − (1/ℏ2)R(∇S)2] + V R.

(I.5.2)

Equating the imaginary parts of this equation, we find

∂R/∂t = −(1/m)∇R ·∇ S − (1/2m)R∇2S

∂P/∂t = −(1/m)∇P ·∇ S − (1/m)P∇2S

∂P/∂t+∇·(P∇S/m) = 0 (I.5.3)

This last equation can be interpreted as a continuity equation. Equating

the real parts of equation (I.5.2), we find

∂S/∂t+ (1/2m)(∇S)2 + V +Q = 0, (I.5.4)

where

Q = − ℏ2

2m

∇2R

R
(I.5.5)

is called the quantum potential.

We can show that this potential is identical to Bohm’s potential found

in the last section. There
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ϕB = −2mD2[(∇R′)2 +∇2R′].

Comparing the different definition of R and R′, we find

R = eR
′
,

so that

[(∇R′)2 +∇2R′] = (∇ lnR)2 +∇2 lnR

= (∇R/R)2 +∇·(∇R/R)

= ∇2R/R.

We will discuss the significance of this equivalence later.

Equation (I.3.4) is equivalent to a Hamilton-Jacobi equation contain-

ing an extra potential Q. Consequently, the quantum particle is consid-

ered to have a definite well-defined trajectory with velocity

v = ∇S/m. (I.5.6)

The particle’s behavior is determined by the quantum potential Q (in

addition to V ) which, in turn, is determined by R = |ψ|2. ψ is then

interpreted as a physically real field which accompanies and “directs” the

particle.
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This interpretation is a manifestly realistic one, since particles, their

paths, and their influences are considered objectively real. The quantum

potential is responsible for the non-classical features of quantum phe-

nomena. This potential is explicitly non-local; since it it independent of

the magnitude of ψ, it can be large where the wave function is small. It

is dependent on the form of ψ and not on its magnitude; so, where ψ is

rapidly changing is where the quantum potential is large. Consequently,

this potential does not yield an ordinary mechanical force. Instead, it is

an “informational potential,” informing the particle in a non-local man-

ner of its surroundings. Bohm says that this potential represents “active”

information. The collapse of a wave function due to a measurement is

explained by the fact that the irreversible nature of the measurement,

that determines which state the particle is actually in, causes the “infor-

mation” present in the other states to become inactive.

The above analysis easily generalizes for N-body systems. For in-

stance, for a two body system which obeys the Schrödinger equation

iℏ(∂ψ/∂t) = −(ℏ2/2m)(∇2
1 +∇2

2)ψ + V ψ,

where ∇i refers to the ith particle, the quantum potential is

Q = − ℏ2

2m

(∇2
1 +∇2

2)R

R
. (I.5.7)

The quantum potential now provides a means of non-local interactions

between particles. This potential, which “informs” both particles, de-
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pends, through ψ, on the state of the entire system, and, hence, each

particle has the potential to “inform” the other of its condition.

Whether there are such non-local correlations between the two par-

ticles, or whether two particles behave independently, such as classical

particles do, depends upon whether the quantum state describing them

can be written as a mixture (e.g., ψ = ϕ1ϕ2) or a pure state (e.g., the

Bohm-EPR state). In the former case, Q reduces to a sum of indepen-

dent terms, Q = Q1 + Q2, and the particles behave independently. In

the latter case, there are non-local correlations.

The foremost problem with the quantum potential approach is the

ontological status of Q. What exactly is this potential due to, how does

it “inform” an electron, and why is it a potential if its effects are so

much different than an ordinary potential? Bohm has suggested, like

the proponents of stochastic interpretations, that there may be some

underlying “ether” in which the non-local potential may act. Lorentz

invariance could still be maintained and Einstein locality not violated if

the structure of this medium was not directly revealable except at very

high energies.

I.6 Statistical Interpretations

In this section we consider those interpretations of quantum mechanics

known as statistical interpretations. These interpretations claim that

quantum mechanics is not a theory which describes individual systems,

but is a theory which only applies to ensembles of similarly prepared sys-

tems. The probabilities that the state vector yields are not probabilities

to be associated with the result of a single measurement, but are instead
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to be interpreted as the relative frequencies for results of measurements

made on such ensembles of systems.

The statistical interpretation has a long history, generally agreed

to have been first proposed (and continuously adhered to) by Einstein.

There have been many attempts to demonstrate a logical priority of this

interpretation over the Copenhagen interpretation, but none have been

generally accepted even by the proponents of the statistical interpreta-

tion.

The statistical interpretation is usually claimed to be compatible with

hidden-variable theories, so that such a theory would be the complete

theory describing individual systems, and quantum mechanics would be

its statistical approximation. We will have more to say on this point

later.

The other major proponents of the statistical interpretation have been

Alfred Landé and, most recently, Leslie E. Ballentine. We will consider

Ballentine’s (1970) arguments in what follows.

The pure quantum state, because of its assumed statistical status, is

assumed explicitly not to provide a complete state description of individ-

ual systems. For example, it “considers a particle to always be at some

position in space, each position being realized with relative frequency

|ψ(r)|2 in an ensemble of similarly prepared experiments.” The role of

observation in quantum theory no longer plays a special role, since there

is no wave function collapse.

Similarly, there is no need for an explicit concept of wave-particle

duality. The apparent need for this concept, along with the phenomenon

of interference, can be explained by the quantizing effects of the object

or device with which the particle interacts. For example, in scattering of
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electrons from a crystal, the discrete set of scattering angles observed is

due to the fact that momentum transfer to and from a periodic object

must be quantized. Individual electrons (which, of course, are not being

described) need not be assumed to be spread out in interaction with the

crystal, rather “the electron interacts with the crystal as a whole through

the laws of quantum mechanics.”

At this point it is instructive to consider one “solution” to the EPR

paradox which has been proven wrong, but whose refutation stresses

the unusual and essential nature of the superposed state describing the

two-particle system.14 It is assumed in this treatment that, after the

two particles have separated, they are correctly described not by the

superposed wave function (I.1.1), but instead by a mixture of simple

product states, each of the form

ψn̂ = n̂±(1)⊗ n̂∓(2).

In each of these terms (i.e., for every n̂), each particle is in a definite state,

with a definite value of spin: hence, the EPR paradox is avoided. This

description yields the same results as the pure state description when the

spin of the two particles is measured along the same direction, or when

only one particle of a pair has its spin measured. When measurements

are made along different directions, however, the mixture analysis yields

different results than the pure state. Simply put, this is because the mix-

ture result is a simple sum of products of probabilities, whereas the pure

state result arises from a sum of probability amplitudes and thereby al-
14This attempt was first suggested by Schrödinger (1935) and by Furry (1936) who

demonstrated its consequences.
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lows for probability amplitude interference effects. Experiment confirms

the pure state treatment.

The reason for considering this “mixture attempt” at this point is that

this would be the resolution offered by a straightforward naive application

of the statistical interpretation. Of course, this is not the resolution

given by the statistical interpretation, but it makes clear that additional

assumptions are needed.

Of course, as mentioned earlier, the statistical interpretation explic-

itly assumes that quantum mechanics does not provide a complete de-

scription of individual systems. So, in this sense, they are in agreement

with EPR. To show agreement with “orthodox” quantum mechanical re-

sults when treating the wave function statistically, attention is focused

on the measurement process. In particular, the difference between “state

preparation” and “measurement” is stressed. The process which is usually

called a measurement (such as deflecting a particle with a Stern-Gerlach

apparatus) is actually a preparation of a sub-ensemble of particles which

are now additionally specified by their value of spin. Measurement is said

to take place when particles are detected with a suitable detector placed

behind the Stern-Gerlach apparatus. Quantum uncertainty associated

with a “measurement” translates into a statistical dispersion associated

with state preparation. However, just as in the “orthodox” treatment

(Copenhagen interpretation) the state of the “state preparation” appara-

tus must be included in the selection of a sub-ensemble of particles with

a particular value of spin.

In order to reproduce the results of quantum mechanics, we see from

the above discussion that the statistical interpretation must make one

of two choices. It can deny the possibility of a description of individual
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systems in the microphysical domain by claiming that quantum mechan-

ics, as the correct theory of this domain, yields a statistical description

of phenomena. In this case, it is logically equivalent, albeit conceptually

different, to the Copenhagen interpretation, since it denies the possibility

of a physical model of microphysical processes.

The other choice the statistical interpretation has is to claim that a

more complete theory describing individual systems is available; but then

it is subject to Bell’s theorem just as any other hidden-variable theory

is, and must then reduce to a non-local hidden variable theory.

I.7 The Many-Worlds Interpretation

Here we discuss an approach that has become known as the many-worlds,

or many-universes, interpretation of quantum mechanics. On this inter-

pretation, when a measurement is made, the “world” splits into many-

worlds, each real and each associated with a possible result of this mea-

surement. This interpretation was first formulated in the late 1950’s by

Hugh Everett III (1957) (along with John Wheeler), by whom it was

originally called the “relative state” formulation. It was later supported

and extended by Bryce Dewitt (1973) and others.

The intent of this interpretation is to avoid the discontinuous change

required by a “collapse” of the wave function during a measurement.

Motivation was also found for this approach by the desire of general

relativists to define a wave function for the whole universe. The unique

role of the observer in other available interpretations made such a wave

function meaningless. In fact, Everett (1973) later called his theory the

“theory of the universal wave function.”
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We begin by assuming that quantum mechanics yields a complete de-

scription by describing all processes by the continuous change of Schrödinger’s

equation. Hence, we accept all the formalism of quantum mechanics, ex-

cept we reject any notion of wave function collapse. With this formalism

we are able to describe all isolated as well as interacting systems. Obser-

vation is described as two systems interacting; hence, the observer has

no special role.

Consider, then, a system consisting of two interacting subsystems, S1,

and S2. This system is in some state ψS. Now, for every state of S2, call

it η, we can associate a “relative state” in S1

ψη
rel ≡ N

∑
i

(ϕiη, ψ
S)ϕi,

where N is a normalization constant and {ϕi} is an orthonormal basis

in S1. It is easy to show that the relative state is independent of the

choice of this basis. For any linear operator in S1, its expectation value

calculated for this state yields a probability conditioned on the state η

in S2.

The standard quantum formalism tells us that, after the interaction of

two systems, the state of the joint system is a superposition of correlated

states of the two subsystems. In fact, one such representation of this

superposition consists of a state of one system and its relative state.

Now we consider these two subsystems to be an observer and an

object-system. A “measurement” now forms a superposition of the ob-

server in the relative state ψη
rel and the object-system in the state η. The

correlation between these states corresponds to the fact that the observ-

- 50 -



I INTERPRETATION OF QUANTUM THEORY

ing device is now in a state indicating some definite value associated with

the state η (if there was a “good” measurement.)

The orthodox approach, in order to explain that we, as observers,

observe a particular measurement result, postulates an instantaneous

collapse of the wave function due to some, as yet, unexplained mech-

anism. Everett assumes no such collapse ever takes place. Instead

the observation-interaction has split the system of observer plus object-

system (or the world) into many real distinct worlds. An observer finds

a particular result because he must find himself in one particular world.

Similarly, one can show that if a second observer is allowed to ob-

serve this composite observer-object system, there will again be a linear

superposition. Each correlated element of the superposition will include

the two observers recording the same observation, along with the state

of the object-system correlated with this observation. So, by virtue of

the quantum-mechanical formalism itself, there is no way to observe the

splitting into many universes.

Strictly speaking, the many-worlds interpretation is a theory of mea-

surement since it does not attempt to interpret the quantum formalism

any further than to suggest that measurement or observation is to be

understood just as any other interaction. In fact, Everett, and later

others, claimed to have proved that the Born probability interpretation

(in which the eigenstate expansion coefficients squared are interpreted to

yield the probabilities for the outcomes of the associated eigenvalues un-

der a measurement) can be derived from the formalism itself. However,

this claim did not hold up under scrutiny and it is generally agreed to-

day that some additional assumption, for instance, explaining why some
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particular observer enters a particular branch of the splitting universes,

is needed.

The advantage of the many-worlds interpretation is the simplicity in

description one gains in only requiring a single continuous kind of time

development. It also has no need for postulating any mechanism, such

as a conscious observer, to obtain a wave function collapse, nor does it

need to alter or extend the formalism of quantum mechanics. At the same

time, it yields a complete and “realistic” description of all phenomena. In

addition, it is the only known interpretation to allow for the conception

of a wave function for the entire universe.

The reason for putting “realistic” in quotation above is due to the ex-

traordinary assumption the many-worlds theory makes about the nature

of reality. Reality is conceived as to be undergoing a continual splitting

into an indefinite number of separate realities, each distinct and “unob-

servable” from all others. In some sense, it could be claimed that this is

the ultimate of metaphysical assumptions: assuming an infinity of worlds

that can never be detected or known.
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II Epistemological Considerations

II.1 The Need

The need to address epistemological considerations in a discussion of

the foundations of quantum mechanics is evident from two aspects of

quantum mechanics: its lack of an acceptable model and the novelty of

quantum phenomena. Since such difficulty of providing a model for a

theory has not previously been met with, the quantum situation raises

the question of the need of this heretofore epistemological cornerstone.

The “novelty” of quantum phenomena directly concerns the long-standing

epistemological problems of the nature of the scientific concept of object

and the problem of causality.

This need is further exemplified by previous interpretational attempts

when one considers the serious epistemological issues they raise (usually

only implicitly) and their failure to address these issues. We have already

discussed some of these interpretational attempts; here we will mention

the epistemological problems each raises and how each fails to address

them; later we will criticize the implicit epistemology they require using

the epistemological framework which we will develope.

The Copenhagen interpretation, by its doctrine of complementarity,

implicitly denies the possibility of constructing a model for quantum me-

chanics: since quantum phenomena are to be strictly defined only relative

to a given experimental arrangement no independent picture of the quan-

tum realm is ever possible. The epistemological consequences of this fact

are not considered by this school. The wave-particle duality, non-local

correlations found in EPR setups and other quantum phenomena are

accepted prima facie as new insights into the true nature of physical re-
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ality, though these concepts are at odds with our present epistemological

framework.

Stochastic, local and non-local hidden-variable and many-worlds in-

terpretations make particular metaphysical assumptions; that is, they

postulate scientific objects which are outside the realm of experience,

and can in principle remain so. Hidden-variable theories postulate ad-

ditional physical variables, stochastic interpretations and the quantum

potential approach postulate a new vacuum medium, and many-worlds

interpretations postulate an infinity of additional realities. The possi-

bility of allowing such objects in a theory is a serious epistemological

problem, and a non-ad-hoc, sound epistemological framework needs to

be developed to justify and support any such postulate. All fail in this

respect.

Finally, the statistical interpretation, by suggesting the absence of

a one-particle theory for the microphysical domain, proclaims an “epis-

temological void” in our physics. Once again the consequences for our

theory of knowledge are dramatic and are not dealt with in this interpre-

tation.

II.2 A Framework for Investigation

We will now attempt to construct an epistemological framework appro-

priate for the discussion of a physical problem. The early 20th century

Neo-Kantian, Ernst Cassirer (1956), has put forth such a program. It

is a program that, although begun from first principles, is both trans-

parent and immediately applicable to the quantum-mechanical problem.

Following this program will allow us to avoid the thorny metaphysical

discussion that other approaches become involved with and which more
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properly belongs strictly to our philosophy. We will, consequently, sum-

marize some of Cassirer’s ideas here; although not entirely agreeing with

his specific conclusion about quantum mechanics, we will then propose

an epistemological framework. We will use this framework to criticize

existing interpretations and later use it to construct our own interpreta-

tion.

Quantum phenomena do exist, and they occur consistently according

to the laws of quantum mechanics. As Cassirer makes clear, our physical

knowledge of the world consists of precisely these sorts of laws. We would

like to know, then, if this new knowledge of the world has been given to

us in a radically different way and if it has changed the way in which we

consider knowledge of the world.

Cassirer presents a program for a consistent, pragmatic epistemology.

As such it considers questions concerning our theory of knowledge only

in so far as they concern the methodology of physics; hence, it is not a

metaphysical but a “critical epistemology” to be used to analyze existing

and possible concepts in physics. For Cassirer, experience is of “first”

importance. Scientific knowledge is to be considered a rational order-

ing of experience; therefore, epistemological statements are statements

concerning experience. There are, according to Cassirer, different types

of such physical statements, which form a sort of hierarchy. These are,

first, statements of the results of measurements, then statements of laws,

and then statements of principles. We will not discuss here the episte-

mological significance of each of these types as explicated in detail by

Cassirer. What is important for our purpose is that the “general princi-

ple of causality” occupies the last level of hierarchy in this categorization

of physical statements.
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The causal relation is a special concept, because with it we can form

definite empirical concepts. In fact, by applying it to our experience, it

is the means by which we construct laws of nature; i.e., it is a statement

concerning method. Accepting this approach, therefore, we immediately

realize that it would be wrong to consider the causal relation as a spe-

cial law of nature and we realize that it cannot be tested as such. It is,

then, totally inappropriate to speak of the causal law as being found to

fail in some instance. Rather, such “indeterminism” would be properly

defined as nature arbitrarily applying whatever law it wished from case

to case. But even this concept is wrong, since now we would be improp-

erly anthropomorphizing nature. In Cassirer’s words, “In strict physical

terminology ‘nature’ is nothing but an aggregate of relations, of laws;

and to such an aggregate, to such a pure form, the category of active or

passive is not applicable.”15

Let us now consider the causal principle itself, expressed in its logical

form: i.e., if x, then y. If, after establishing a physical law via the causal

principle, we find we can apply this law to cases where there is doubt or

uncertainty in the premise, x, what do we say about this causal relation?

We can see from what has been said above, and we also know directly

from traditional logic, that the validity of the premises does not affect

the form of the causal law; i.e., it is obvious, once again, that it would

be wrong to attack the causal principle in such a case. What we must

realize, however, is that for an actual case to properly describe natural

phenomena a cause must be a “true” cause; otherwise, the meaning of the

causal relation is ambiguous. Here, a true cause is one that can somehow

be directly or indirectly experimentally proven; or, in the language of the
15Cassirer (1956), p. 119
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present framework, an alleged cause must be directly empirically given;

that is, an observable fact.

Cassirer also considers the relationship between our scientific concepts

of objects and physical reality. Such a concept, he claims, is the result,

the consequence, of our experience; it is not some thing before us waiting

to be discovered. It constitutes (at any given time) a limit of our experi-

ence, but not a permanent limit to knowledge. Hence, we can understand

how our concepts and definitions of objects change through time. But,

Cassirer points out, without need for any recourse to metaphysics we can

realize that there must be a “fundamental demand” which is consistent

and unchanging, which these concepts satisfy. As Cassirer says, “Just

as the geometrician selects for investigation those relations of a definite

figure, which remain unchanged by certain transformations, so here the

attempt is made to discover those universal elements of form, that persist

through all change in the particular material content of experience.”16We

can say, then, that these invariant “universal elements of form” under-

lie our epistemological consistency. If these invariants were lacking our

scientific concepts of objects would be inconsistent or confused.

Our Framework

How does Cassirer’s epistemological framework help us deal with the

quantum-mechanical situation? We see first of all there is no question

of an indeterminism. The causal relation has been applied to discover

the laws of quantum mechanics, which are consistent and well-confirmed.

What these laws are concerned with (i.e., the wave function), however, is

not an observable—not a “true cause.” For the eigenstate case, however,
16Cassirer (1953), pp. 268–9, reprinted in Cassirer (1956), p.l38.
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or in certain situations in case the quantum mechanical state can be

described as a mixture of eigenstates, the quantum-mechanical treatment

can deal directly with observables.17 So, although it is improper to speak

of an “indeterminism” in quantum mechanics, application of the concept

of causality in quantum mechanics is restricted in some sense. In other

words, since the causal principle is the means by which we order our

experience, in the quantum-mechanical situation we are epistemologically

inhibited.

To more fully understand what this last statement means, let us con-

sider, via the above analysis, the concept of object offered in quantum

mechanics. We are already familiar with the fact that there is an epis-

temological novelty in our scientific concepts of objects in quantum me-

chanics; e.g., the wave-particle duality. This is a novelty in our epis-

temology because we have not discovered new objects, but rather have

changed the way in which we define objects; and, as we argued above,

the concept of object is not a thing to be discovered, but a conceptual

device we apply to experience. This “novelty,” then, represents a break-

down in the normal process of ordering experience. This is consistent

with the above analysis of determinism in quantum mechanics, where we

also found that we are to expect some breakdown in our epistemology

of the quantum realm. What this means for the nature of physical re-

ality is also clear from our above analysis: since quantum mechanics is

well-confirmed as the correct theory of its ontological domain, we expect

some invariant, some universal element of form, to be lacking or faulted

in this domain.
17In this context Cf. Howard (n.d.), where Bohr’s complementarity interpreta-

tion is taken as stating a correspondence between quantum mixtures and a classical
description. Also, recall the “mixtures resolution” of the EPR paradox, Section I.6.
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II.3 Explicit and Implicit Philosophical Positions in

Interpretations of Quantum Mechanics

We can divide the implicit or explicit epistemological positions taken by

interpreters of quantum mechanics into two groups: those who assume

a realist epistemology and those who assume a pragmatic one. It is the

pragmatists’ aim not to interpret the quantum formalism any further

than is practically needed to correlate experiment with theory. It is gen-

erally their view that the role of physics is to relate observations to one

another and to be able to predict with increasing accuracy outcomes of

such observations. Physics as “explanation,” they contend, has never been

more that this, because it never really explains the why behind physical

phenomena. The “aim” of physics is to merely order our experience, not

to construct a model of physical reality. Such a pragmatic epistemol-

ogy was supposedly favored by Bohr, and has been explicitly adopted by

Copenhagen interpretation supporters today.18 The fundamental idea

behind the doctrine of complementarity, that any description of physical

phenomena must be made with reference to a particular experimental ar-

rangement, exemplifies these pragmatic ideas. A picture or model of the

microphysical domain is clearly renunciated and prohibited. Once again,

the “aim” is to order experience and subsequently to communicate it, and

this requires descriptions to be in classical terms, those in conformance

with experimental arrangements.

The need to communicate in classical terms was, for Bohr, the moti-

vating factor behind the adoption of this philosophy. This is also proba-

bly the weakest point in his approach. This suggests that our concepts

and descriptions can never develope and evolve. This is consistent with
18See, for instance, Stapp (1972).
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the obvious criticism of the realists—that without a picture or a model

progress becomes stagnated because it becomes difficult to discover new

phenomena. In other words, there is a certain sterility inherent in this

pragmatic approach. We do not wish so much to criticize this particular

philosophy, here, as to point out that it entails an in depth philosophical

structure. The obvious criticism of a pragmatic epistemology is that this

is a subjective philosophy. To defend against this charge requires an ex-

tensive ontology of ideas and their relationship to experience (which, we

note, is quite at odds with a Kantian epistemology.) To rely so heavily

on such an (controversial) ontology to describe a particular branch of

physics is not very practical.

Our epistemological framework is a truly practical one. It is a frame-

work to be used for all domains of experience. It makes a minimum of

assumptions, and requires no ad-hoc ontological framework for any par-

ticular domain. It gives no special status to any ontological domain nor

a special place to any particular set of concepts.

The statistical interpretation claims to avoid the epistemological prob-

lems encountered by the Copenhagen interpretation by avoiding a one-

particle theory. The consequences are the same, however, since no picture

or model of the microphysical domain is possible—the statistical inter-

pretation obtains this by fiat. In addition, however, we saw that, in order

to give a consistent account of measurement, defining physical phenom-

ena with reference to an experimental arrangement was still required. So,

in fact, the statistical interpretation assumes implicitly the same prag-

matic epistemology, and is, therefore, subject to the same criticisms as

the Copenhagen interpretation.
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The “realist” school of interpretations of quantum mechanics wishes

to fit the quantum formalism into a more complete formalism which will

be expressly realistic; that is, they wish to construct a theory which de-

scribes a physical reality existing independently of observation, but which

reduces to the quantum mechanical formalism under certain conditions.

The realists believe that there must always be a description available

of a given ontological domain such that all elements of physical reality

are simultaneously describable. Furthermore, they find it necessary, in

order to achieve this in the microphysical domain, to make metaphysi-

cal assumptions about additional elements of reality, which are even in

principle unobservable.

Hidden-variable theories, stochastic interpretations, the quantum po-

tential approach, and the many-worlds interpretations all adopt a realist

ontology in the microphysical domain. Non-local hidden variable the-

ories (in which the quantum potential approach as well as, possibly, a

non-local version of a stochastic theory can be included) and the many-

worlds interpretation have not been excluded by Bell’s theorem and its

corresponding experimental evidence. As recent work, such as Jarrett’s,

has shown, however, any non-local theory of the microphysical domain

(of which quantum mechanics is an example) needs to be incomplete, as

Jarrett defined it. It is difficult to imagine how any theory can be Jarrett

incomplete and still provide a realist picture.

The many-worlds interpretations is alone in escaping completely the

results of Bell’s theorem. Its privileged position comes at an enormous

price, however. It does not simply postulate an additional element of

physical reality, but, rather, an infinite number of almost identical re-

alities. It is testament to the power of such metaphysical assumptions,
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and this may be the ultimate, that such unavoidable agreement with

quantum mechanics can be obtained.

II.4 Motivation for the Present Prescription

We have constructed a critical epistemological framework from first prin-

ciples appropriate for an analysis of the quantum realm. Whereas in

the first chapter we showed how interpretational attempts have failed,

here we have shown that they are even epistemologically unprepared to

deal with the quantum realm. We have subjected the theory of quan-

tum mechanics to our framework and found that the complete consistent

knowledge we have of other ontological domains is impossible to obtain

for the quantum domain. Through our analysis we came to realize that

the consistency in our knowledge that we experience in most ontological

domains is due to some underlying invariances of physical reality. Some

invariant element(s) must then be lacking or faulted in the quantum

domain. This is as much as we can say from a philosophical analysis;

however, it provides a foundation and motivation for our physical anal-

ysis.

In modern physics the concept of invariance has played a major role.

These invariances are found to correspond to symmetries, usually either

geometrical or mathematical (viz. equations.) In one area, though, sym-

metry is found to be involved in a more fundamental ontological way;

this is in the study of the elementary forces. Here symmetry is an ab-

stract concept which takes the form of a high-level principle, in the sense

that it directs our formation of certain physical laws. Epistemologically,

it is very much a superior concept and fits very well with the idea of an

underlying “element of form.”
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To understand the quantum-mechanical situation, then, we are en-

couraged to investigate the concept of symmetry and in particular the

role it plays in the theory of elementary forces; i.e., gauge theory. This

task will occupy the next two chapters.
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III Symmetry

III.1 Ontology and Significance

Definition of Symmetry

When one speaks of symmetry, geometrical symmetry is usually thought

of. However, the concept of symmetry is found to play a role in other

mathematical realms also, from analysis of electrical circuits to differ-

ential equations to quantum field theory. Here we will try to define

symmetry and develope a scheme for its application in the most general

terms, so as to not unnecessarily restrict its ontological scope. Geomet-

rical language, though, will remain a convenient language to develope

these ideas. Some heady praise has been heaped upon the concept of

symmetry. Hermann Weyl in his well-known book, Symmetry, went as

far as to say, “all a priori statements in physics have their origins in sym-

metry.”19 We will, in fact, utilize symmetry as the epistemological basis

of our assertions, and, in conjunction with our previously defined philo-

sophical framework, this will allow us to develope a consistent ontological

foundation for microphysics.

In early Greek philosophy, the concept of symmetry can be found in

ideas on proportions, vis a vis harmony, in the world. Today a concise,

but rough definition of symmetry involves an invariance of a mathemat-

ical or geometrical object under a set of automorphic transformations.

This “definition” fails at being a true definition for two reasons. Firstly,

notice the word “involves;” that is, it does not even have the form of a

definition. Secondly, our terms and their relation to one another are not

defined. The latter failure can be fairly straightforwardly dealt with, and
19Weyl (1952), p. 126.
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is what will consume the next section. The first, apparently trivial, prob-

lem of writing down a literal definition will be seen to be not so trivial

and will be dealt with in stages, as insights into it are discovered during

the next section.

First, let us choose the general term “system” to be substituted for

a “mathematical or geometrical object”.20 For now we say no more in

general about “the system” except that it is something that has proper-

ties, is the thing we are investigating, and that it needs to be defined

for a particular case. As we proceed, this concept of system will become

clearer. We use the term “state,” A, to designate a possible “condition” of

the system: this condition designating some or all of those attributes of

the system that are accidental; that is, those attributes that can change

without changing the definition of the particular system at hand. All

other attributes are “permanent” and essentially make up the definition

of the system. The set of those states all referring to the same set of

accidental attributes form a “state space.” (Notice from these definitions

of state and state space that one can define many different state spaces

for the same system.) We also define a subsystem as a system wholly

contained within a system, in the sense that its permanent attributes

form a subset of those of the system.

From here on we concern ourselves with states and state spaces. If

an accidental attribute (or attributes) can be formulated as an equiv-

alence relation (≡) between states—that is, satisfies the conditions of

Reflexivity, Ai ≡ Ai Symmetry, Ai ≡ Aj ⇔ Aj ≡ Ai, and Transitivity,

Ai ≡ Aj, Aj ≡ Ak ⇒ Ai ≡ Ak—then this relation can be used to decom-

pose the state spaces into equivalent subspaces (i.e., subsets of equivalent
20The following discussion roughly follows the treatment given by Rosen (1983),

Ch. 3.
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states.) An automorphic transformation, T , can now be considered as a

one-to-one mapping of a state space onto itself; i.e., T (Ai) = Aj, for all

Ai. If this transformation preserves equivalent subspaces for some equiv-

alence relation (does not map any state A, into an inequivalent one), then

we call this transformation a “symmetry transformation.” S. We write

S(Ai) = Aj ≡ Ai

for all Ai.

We have now clearly defined our terms and, in the end, finally remet

with the word symmetry. Extraction of a clearcut definition from this use,

however, is still not easily done. Let us review what we have done. We

started by reducing the concept of system to a space of states, a construct

easily used to investigate the accidental properties of the system. We

next allowed this space to be given a substructure via the definition

of an equivalence relation. Then, under the effect of an automorphic

transformation, which essentially exchanges states within a state space,

we identified those that don’t “violate the boundaries” of the equivalence

relation as symmetry transformations.

Now, in general, there is a nontrivial set of symmetry transformations

which preserve the subspace structure for a given equivalence relation.

This set, in fact, turns out to form a group, called the symmetry group.

This can be seen as follows. Firstly, these transformations are clearly

associative. Secondly, since

S1(Ai) = Aj ≡ Ai
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and

(S2S1)(Ai) = S2(S1(Ai)) = S2(Aj) = Ak ≡ Aj ≡ Ai,

we have closure. For the identity transformation, I, we have I(Ai) =

Ai ≡ Ai, so the identity transformation is a symmetry transformation.

Finally, if S(Ai) = Aj ≡ Ai, then S−1(Aj) = Ai, but if Aj ≡ Ai, then

Ai ≡ Aj, from the symmetry of the equivalence relation, so S−1 is a

symmetry transformation.

We find, then, that given a system with a defined state space and

specified equivalence relation, we uniquely determine a symmetry group

(which is, in fact, a subgroup of the group of all the possible automorphic

transformations on this state space.) However, from this statement, we

see that we cannot ascribe a symmetry group directly to a system for

two reasons. First, for a given system it is possible to construct many

different state spaces. Second, the symmetry group we find is determined

by the equivalence relation we choose, of which there are many. So, even

before we try to determine how to apply the concept symmetry directly

to a system, we find its use so far is a bit ambiguous in that we cannot

ascribe a unique symmetry group to a system.

However, this does not mean we must be slave to this generality. If

we consider similar systems, choose state spaces which concern the same

attributes, and select the same equivalence relation, we can compare the

symmetry groups of these systems in some way. To compare things we

need an “ordering” of the things. Quantifying the symmetry groups (i.e.,

assigning quantities to symmetry groups, which we can call symmetry)

would constitute an ordering of the symmetry groups. Of course, to
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do such a thing we need to consider the abstract groups related to the

symmetry groups; then, if one group can be considered a proper subgroup

of another, we can assign the latter a higher symmetry. Furthermore, if

we are dealing with finite groups, then we can consider the order of the

groups to quantify and order them. In this way, we can quantify and order

a set of systems according to their symmetry. It is not clear, however,

that this procedure will always unambiguously order the systems at hand.

For each case it is necessary to choose the method of ordering carefully.

Let us now regress and, with the aid of these new definitions, give a

clearer explication of the concept of system. We define the “structure” of a

system as that aspect of the system that is invariant under any symmetry

transformation. In other words, when we perform a symmetry operation

on a state space of a system, that aspect of the system that does not

change we call its structure. This definition is made with direct reference

to the symmetry transformations of a state space of the system, so that, if

we could find no equivalence relations on a state space of the system and,

hence, no non-trivial symmetry transformations (an asymmetric system),

we could say the structure of the system is trivial or, rather, that it has

no structure at all.

Most systems are composite, that is, they have a “substructure.” This

leads us to consider in detail the nature of subsystems and to discover

how the concept of symmetry can play a role in such an analysis. What

do we mean when we say a system has a substructure? We can take

any system, defined by its permanent attributes, and arbitrarily form a

subsystem by taking a subset of these permanent attributes; however,

if we are to be consistent with our earlier definition of structure, such a

subsystem would not constitute a substructure unless it has a state space
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with non-trivial equivalence relations. Put more simply, a substructure

is a symmetrical part (subsystem) of a system. Now, a system may have

symmetrical subsystems (substructures) and yet be asymmetrical; that

is, symmetrical parts may be put together to form a whole which is not

as symmetrical as the parts. Conversely, a system may have substruc-

tures of lower symmetry than itself (or may have no substructures.) For

a system with substructures, the distinguishing factor between these two

general cases is the existence of equivalence relations connecting the sub-

structures. If there exists no such equivalence relations, then the only

symmetry transformations for the system will be those in common among

the subsystems; the symmetry group of the system will be, therefore, just

the intersection of the symmetry groups of the subsystems. We can write

this as G =
⋂

iGi. We see that, in this case, the symmetry of the whole

system must be equal to or smaller than that of any of its subsystems.

We call this a heterogeneous system.

If the substructures are equivalent, the situation is more complicated.

The new state space will, as before, support the symmetry transforma-

tions preserving common equivalence relations of the substructures (i.e.,⋂
iGi ), but will now also allow symmetry transformations based upon

equivalence relations between the substructures. We call this a non-

heterogeneous (or homogeneous) system.21 Let us list these new trans-

formations (group elements): g1 = e, g2, . . . , gn. Now,
⋂

iGi is a group

and also a subset of the group elements of the new symmetry group, G,

so it is a subgroup of G. We call it H = {hi}. Now, list all right cosets

of H with the new group elements:
21See Shubnikov and Koptsik (1974), pp. 328-350, for a discussion of such composite

systems. Rosen (1983) does not consider non-heterogeneous systems.
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h1, h2, . . . , hn

h1g2, h1g2, . . . , h1gn

.

.

.

h1gn, h2gn, . . . , h1gn

Examining this list, we see that no two elements in the same line can

be equal, since then higj = hkgj, or hi = hk, a contradiction. Also no

two elements in the first two lines are the same, since then hi = hkg2„

or g2 = h−1
k hi ∈ H, a contradiction, since g2 is not a member of H. So

all the elements listed in the second line must be “new” elements. This

may exhaust all the new elements, but, if it does not, then by similar

arguments another line constructed with a new element not found in the

second line contains elements not found in the first two lines. At some

point in this continuing process, we will exhaust all the new elements

and the rest of the new lines will contain elements already listed. We see

from this analysis that the number of new elements must be a multiple

of the number of elements in H. This is, in fact, a statement of a famous

theorem in group theory due to Lagrange,22 which can also be stated as

r (the order of H) is a divisor of r+n-1 (the order of G.) The trivial case

n=1 (only the identity element) corresponds to the heterogeneous case.

The entire above listing may duplicate, but certainly exhausts all the

elements of G; hence, we may write G as the union of these right cosets:
22See, for instance, Herstein (1975), pp.41-2.
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G = Hg1
⋃

Hg2 · · ·
⋃

Hgn

=
⋃
i

Hgi

=
⋃
i

(
⋂
j

Gj)gi

Symmetry Conditions

The preceding discussion of the concept of symmetry was kept general;

essentially, general in the sense of the concept of system used, in that this

concept was mostly unrestricted. This was done so that—our problem

being of a foundational nature—we remain as close to first principles as

possible. In fact, we will maintain, in accordance with the remarks at

the beginning of this chapter, that, although there may be equivalent

parallel epistemological pathways, the concept of symmetry provides a

direct and nitid pathway from first principles to foundational problems

in physics.

As with all high-level concepts in science, symmetry is used to under-

stand the constraints on the nature of the physical world. In particular,

the concept of symmetry as applied to physical systems will allow us to

discover an important principle, the symmetry principle. This principle

will inform us of a specific constraint on the nature of physical reality,

and, in doing so, will provide us with an important insight into our spe-

cific problem. We will investigate this principle next.

- 71 -



III SYMMETRY

The Symmetry Principle

Consider a heterogeneous system containing two subsystems, A and B,

which together constitute the entire system.23 Next, define an appro-

priate state space for the whole system and, hence, state spaces for the

two subsystems. We define a “causal relation” as follows. First of all,

we note that choosing a state of the whole system determines the states

of the subsystems. Now, we look for a correlation between the states

of subsystem A and subsystem B. If we find that for every state of the

whole system, the same state of subsystem A occurs with the same state

of subsystem B (but that different states of A can appear with the same

state of B), we say that A is a “cause subsystem” and B is the “effect

subsystem”, or that A causes B.

We now note that if this causal condition is met, there is a one-to-

one correspondence between states of the whole system and states of the

subsystem A. We can see this immediately since, first, as noted above, a

state of the whole system determines the state of A, and, second, that

since a given state of A determines the state of B and since subsystems

A and B constitute the entire system, then the state of the entire system

is determined by a state of A. The same cannot be said of B, of course,

since different states of A can appear with the same state of B. So, at the

logical level of state spaces, the state space of subsystem A is equivalent to

the state space of the whole system. But, recall that for heterogeneous

systems the symmetry of a subsystem is greater than or equal to the

symmetry of the whole system; therefore, the symmetry of subsystem

B must be greater than or equal to that of the system, and, hence, of

subsystem A. In other words—substituting for the causal identities of the
23We again follow Rosen (1983), Ch. 4.
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subsystems—the symmetry of the effect subsystem (or simply, the effect)

must be greater than or equal to the symmetry of the cause subsystem

(the cause.) This is a statement of the “symmetry principle.”24

We can construct a more general derivation of the symmetry principle.

The previous derivation, although rigorous, ignored much of the formal-

ism we had just developed. Assume then that, naturally, our state spaces

and equivalence relations for our system and subsystems have been cho-

sen by virtue of the causal relation of interest; that is, the causal relation

determines the equivalence relation of the cause—“cause equivalence”—

and the equivalence relation of the effect—“effect equivalence.” From this

assumption and from our prescription for identifying our subsystems fol-

lows immediately an “equivalence principle”: states of the cause subsys-

tem which are cause equivalent must “yield” (i.e., appear with) states of

the effect subsystem which are effect equivalent. In other words, states

which are cause equivalent correspond to the “same cause” and a causal

relation implies a unique effect: i.e., states which are effect equivalent.

Also, we see that cause inequivalent states may yield effect equivalent

states. If we now let the symmetry group of the cause be the symmetry

group for cause equivalence and likewise for the effect, we find ourselves

back at the symmetry principle, this time stated as: every member of the

symmetry group of the cause must be a member of the symmetry group

of the effect (but the effect symmetry group may contain elements not in

the cause symmetry group.)

There are two ways in which the symmetry principle can be used: to

set a lower bound on the symmetry of an effect; that is, if we know a

cause—and its corresponding symmetry—we know the effect must have

at least this much symmetry, or to set an upper bound on the symmetry
24This is our derivation. Rosen’s derivation follows.
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of a cause; that is, given an effect—and its symmetry—we must look for

a cause that has no more symmetry than this (simplicity would like the

cause to have the maximum permitted symmetry.) We can refer to the

first as a minimalistic use and the second as a maximalistic use of the

symmetry principle.

It is interesting at this point to take note of a parallel approach to this

subject. George Birkhoff reformulated Leibnitz’s “principle of sufficient

reason” ("nothing happens without a sufficient reason”) as follows:

If there appears to be in a theory T a set of ambiguously

determined (i.e., symmetrically entering) variables, then these

variables can themselves be determined only to the extent al-

lowed by the corresponding group G. Consequently any prob-

lem concerning these variables which has a uniquely deter-

mined solution, must itself be formulated so as to be un-

changed by the operations of the group G (i.e., must involve

the variables symmetrically).25

Although at first blush appearing not to have any connection with Leib-

nitz’s principle, a little reflection shows it, in fact, to be a symmetry

oriented extension of Leibnitz’s simple but important principle. In ad-

dition, we see a minimalistic use of the symmetry principle here: the

effect (i.e., the solution) has set upon it a lower bound on its symmetry

(it must be “unchanged by the operation of the group G,” the symmetry

group of the cause.) We will discuss this connection further later.

Let us consider now the procedure by which symmetry and the sym-

metry principle can be used, still keeping our discussion general. Usually

we are faced with looking for a cause given a certain effect. In this case,
25Birkhoff (1950), p.45.
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we would use the symmetry principle in the maximal way. Very often,

though, the effect does not exhibit a perfect symmetry but rather an

approximate one. Our first task, then, is to identify the symmetry that

is being approximated. We then assume that the cause has a similar

structure; that is, it also “almost” has this symmetry, or rather, its “dom-

inant” part has this symmetry, although, of course, it can never possess

a greater symmetry than the effect.

We can make the discussion of this procedure more precise.26 First

we define an “approximate symmetry transformation,” T (u), such that

d(u, T (u)) ≤ ϵ,

where d is a metric on the state space with the properties

d(u, u) = 0

d(u, v) = d(v, u)

d(u,w) ≤ d(u, v) + d(v, w).

In other words, d is an equivalence relation. With such an approximate

symmetry transformation, then, we can obtain an approximate symme-

try group, with ϵ providing a measure of the “goodness of approximation”

of this group to the symmetry being approximated. Approximate sym-

metry is also sometimes called ”broken symmetry.” where ϵ would now

be a measure of the symmetry breaking due to some symmetry breaking

factor.
26See Rosen (1983), Ch. 5.

- 75 -



III SYMMETRY

Situations involving approximate causal symmetry can be classified

into three cases: stability, lability, and instability. In the case where there

is stability, causal symmetry deviations (from some perfect symmetry)

are “damped out”: so that the approximate symmetry group of the cause

is the minimal (exact) symmetry group of the effect. In the case of labil-

ity, the deviations from perfect symmetry in the cause are transmitted

consistently: hence, the approximate symmetry group of the cause is the

minimal approximate symmetry group of the effect. Finally, in the case

of instability (also known as spontaneous symmetry breaking,) these de-

viations are amplified when transmitted, in such a way that the exact

symmetry of the cause is the minimal (exact) symmetry of the effect. In

this last case, the cause can quite often appear to have more symmetry

than the effect, because the approximate symmetry group of the cause

is larger than the symmetry group of the effect; however, the symmetry

principle is not violated because the exact, or actual, symmetry group of

the cause is not larger than the symmetry group of the effect.

Epistemological Considerations

The principle of symmetry as derived previously has the appearance of

a mere tautology: it is a statement about the nature of cause and ef-

fect which uses the nature of the causal relation to define its specific

constituents, namely, the cause and effect equivalence relations and the

connection between them.27 But, of course, we do not wish to add any-

thing to the causal principle, but to better understand it and use it. In

fact, as we have seen, the principle of symmetry is a useful analytical
27We leave Rosen’s treatment here.
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tool, and, given that it follows directly from the causal principle, should

prove useful in an epistemological analysis.

The principle of sufficient reason, discussed above and identified as

an application of the symmetry principle, can also be seen to be an expli-

cation of the causal principle. Basically, an establishing of the principle

starts by assuming one has a problem which has a unique solution; i.e,

one assumes a cause-effect relation. If the problem does not distinguish

between two situations (causes), then the solution (effect) should be the

same for these two situations. This observation, then, immediately yields

the principle of sufficient reason (as stated above) which all problems

must obey.

The conclusion that we draw from these two observations, then, is

that we have found a direct connection between a high level a priori

principle (arguably the highest level) and another principle with signifi-

cant epistemological import. In fact, we can see that the entire content of

causality has been translated into the symmetry principle and its atten-

dant concepts: we identified the presence of a causal relationship with the

existence of subsystems whose states were related to each other in very

definite ways, the symmetry principle being a quantitative restriction on

this relationship.

What we wish to take note of here is not the particular form of this

restriction, but rather its nature as relating to symmetries. Imagine

that it was claimed that these symmetries (of cause and effect) were

somehow ill-defined in some instance (later we will give a suggestion as

to how they may be ill defined.) This would be tantamount to saying that

the cause and effect subsystems were ill-defined, since inherent in their

identification is a realization of some definable symmetry. Consequently
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the existence of a causal relation would be brought into question. Of

course given the a priori status of the causal relation (as stressed in the

last chapter,) it is not possible to talk about the correctness of the causal

relation, but rather it is traditionally only possible to say there either is

or is not a causal relationship.

Let us now make connection with our discussion in the last chapter.

There we claimed that some necessary invariances of the microphysical

domain were lacking in such a way as to restrict our use of the causal

principle in understanding this domain. The above connection between

symmetry and the causal principle puts this claim on a stronger footing

and also allows us to leave the awkward business of talking about the sta-

tus of an a priori principle. Rather, we can concentrate our investigation

on the concept of symmetry.

It is instructive, at this point, to compare the two derivations of the

symmetry principle given earlier. Crucial for the first derivation were

the assumptions that the system at hand was heterogeneous and that

the cause and effect subsystems constituted the entire system. We can

see, though, that the latter assumption is not so critical. Imagine a sys-

tem satisfying the above two assumptions and a causal relation being

demonstrated between the two subsystems. We can now easily imagine

enlarging the whole system without destroying its heterogeneous nature

or changing the two subsystems; certainly, then, the causal relationship

between the two subsystems will not be destroyed and, hence, the va-

lidity of the equivalence principle will not be affected. Next, imagine a

heterogeneous system which is larger than the union of two subsystems

which have been established as cause and effect subsystems. If the sys-

tem is truly heterogeneous, we can reduce the system to just the size of
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the union of the two subsystems, without effecting the logical relations

between states, and, once again, the first derivation of the symmetry

principle will be valid. So, it is really only the requirement that the

system be heterogeneous that it is critical.

Our second deviation is stated in more precise language, but makes

no explicit reference to the heterogeneous nature of the system. How-

ever, we recall that the requirement for a system to be heterogeneous is

that it not contain equivalence relations connecting its substructures. By

connecting the causal relation with the symmetry principle as the means

by which the orders of the cause and effect subgroups were related, it

is implicit that there should be no such direct connection between these

structures; that is, in choosing the substructures of a system—as cause

and effect—and the appropriate equivalence relations, allowing the pres-

ence of such connecting equivalence relations would belie the original

intent of dividing the system in an analyzable manner (i.e., in terms of

cause and effect.)

This last argument is valid only so long as this implied freedom of

choosing subsystems, state spaces, and equivalence relations makes sense.

The possibility exists that, when faced with certain systems, choices of

state spaces and equivalence relations and even subsystems may not be

as rich as need be. In this case, desiring identification in a system of

cause and effect subsystems may force us to analyze our system in a

non-heterogeneous way; i.e., in a way that might lead us to say the

associated symmetries are ill-defined. In this case, we might very well

expect confused results in terms of a symmetry principle and, once again,

results difficult to interpret in terms of cause and effect.
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III.2 Symmetry and Physical Systems

We will now study how the concept of symmetry and the ideas we devel-

oped in the first section of this chapter are applied to isolated physical

systems.28 We first need to identify those aspects of physical systems

which correspond to the abstract notions developed in the first section.

Still, within this narrower context, we will try to keep our discussion as

general as possible, until we find it necessary to further narrow our scope.

Our general abstract concept of system, then, we identify with physi-

cal dynamical process. The causal relations we find in physical processes

are, of course, the laws of nature, and the cause and effect subsystems

are, correspondingly, the initial and final conditions, respectively.

The familiar concept of an “isolated physical system” (i.e., a group of

bodies with properties) will not be the symmetry-oriented construct of

system that we have been discussing. Rather, it is the dynamic process

that we call our “system” and whose structure, substructures, and their

interrelations that we will be investigating; however, we will find these

two concepts of system to be closely related.

The relation between physical system and our logical system (process)

is as follows. First, we note that a given physical system can support

different processes, but also a given process can take place in different

physical systems, so neither concept logically includes the other. We

are familiar with what is a state of a physical system. The dynamical

process state space is more subtle—it is the space of all possible spe-

cific processes for a given dynamical process. There turns out to be a

one-to-one correspondence between a given process state space and the

physical state space of a physical system: a state of the cause subsystem
28See Rosen (1983), Ch. 6.
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is a physical state (a specific set of initial conditions) and, correspond-

ingly, every physical state can serve as a cause subsystem state and,

further (as we noted in the first section of this chapter), there is a one-

to-one correspondence between states of the whole system and states of

the cause subsystems (for heterogeneous systems.) Consequently, all the

transformation properties—i.e., equivalence relations, etc., of our system

(process) space—will be identical for physical state space.

The obvious next step is to carry over our results of the first section of

this chapter (namely, the symmetry principle) to processes and, hence,

physical systems. Before we do this, however, we need to discuss the

nature of our causal relations here; i.e., the laws of nature. A law of

nature can be thought of as a mapping—a (temporal) mapping of states

from the cause subsystem to the effect subsystem (any general causal

relation could be interpreted this way, however, such an interpretation

is more easily motivated in the physical case.) We can represent such a

mapping as u N−→ Nu where N represents our law of nature mapping, u is

a state of the cause subsystem, and Nu is a state of the effect subsystem.

Now, these states are also physical states (initial and final conditions),

so this mapping is also a mapping of physical state space into itself.

Consider, then, a process and some physical (non-temporal) transfor-

mation, T , on the state space of this process; i.e., an invertible mapping

u
T−→ Tu, for all states, u. We can apply this transformation to final

states of this process; that is, we can write

Nu
T−→ TNu
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for all u. Further, let us consider the temporal development of states Tu;

i.e.,

Tu
N−→ NTu

for all u.

Now we assume T is a symmetry of our law of nature, by which we

mean that it will map cause subsystem states to cause equivalent states

and effect subsystem states to effect equivalent states (i.e., it acts as a

symmetry transformation in these spaces.) It then follows that the states

on the right-hand sides of the above two relations must be equivalent;

i.e.,

TNu ≡ NTu

for all u—or, equivalently,

TN = NT.

In words: the transformed result of a process is the same as the result

of a transformed process. If the above is true of a transformation, T ,

and our system is heterogeneous,29 it will also, via our correspondence

between physical and logical state spaces, be a symmetry transformation
29These results will not necessarily hold for non-heterogeneous systems, as we will

discuss later.
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on physical state space (in the general sense of a symmetry transforma-

tion.)

The preceding discussion and consequent definition of a symmetry

transformation of a law of nature provides us with a connection between

a physical symmetry and the abstract notions of symmetry associated

with causal systems. We can extend this connection to the concept of

symmetry groups. The symmetry group of a law of nature, N , is simply

defined as the group of all invertible transformations which obey the

above commutation relation. By our above analysis, we see that all

members of this group will map any state of the cause subsystem into

a cause-equivalent state. But, also, we see that they will map all cause-

equivalent states to one-another, otherwise two cause-equivalent states

could be considered physically inequivalent. The symmetry group of N

is then isomorphic to the symmetry group of the cause (we could have

seen this immediately from the one-to-one correspondence between the

state space of the whole system, the cause subsystem, and the physical

system.)

Similarly, all members of the symmetry group of N will map any state

of the effect subsystem into an effect-equivalent state; however, in this

case there is no reason why there may not be states which are effect-

equivalent and which are not mapped into one-another by a symmetry

transformation of N . In fact, we know that cause-inequivalent states can

evolve into effect-equivalent states. So, the symmetry group of N is a

subgroup of the symmetry group of the effect.

The above two results yield two principles for physical state spaces

which are parallel to those for logical state spaces. First is an equiv-

alence principle: equivalent physical states must evolve into equivalent
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states while inequivalent physical states may evolve into equivalent ones.

Second is a symmetry principle: for an isolated physical system, the

degree of symmetry cannot decrease, but either remains constant or in-

creases. This is called the "general symmetry evolution principle.” It

should be noted here that one symmetry of the laws of nature is special

and does not follow the above analysis; that is time-reversal symmetry.

This is because this symmetry acts on the evolution transformation, N .

As before, we can consider the transformed (time-reversed) initial state

u
t−→ tu,

where t stands for the time reversal transformation. And once again we

can apply this transformation to a final state

Nu
t−→ tNu.

However, to consider the evolved resultant of the transformed initial

state, we must take into account that the process is time-reversed; in

other words, we must map with the inverse of N , N−1:

tu
N−1

−−→ Ntu.

If t is a symmetry transformation of N , then we have

tNu ≡ N−1tu.

- 84 -



III SYMMETRY

for all u with the obvious necessary condition that N−1exists (i.e., N is

one-to-one and onto), or we may write

tN = N−1t.

We also note that it is possible that a symmetry transformation may

only hold for a subspace of a physical state space, so that the relation

TNu ≡ NTu (or tNu ≡ N−1tu)

may be true only for all u belonging to this subspace.

The general symmetry evolution principle is “general” because it fol-

lows directly from general considerations; it does not include any further

specific assumptions. This principle, however, has a drawback from a

practical point of view: it concerns the entire state space of a system

whereas in analysis of particular physical systems, we usually follow the

evolution of a particular initial state. In terms of processes, this princi-

ple concerns the space of many possible processes, not a particular one

of interest.

We define the symmetry group of a particular state as the group of

those transformations on physical state space which take this state into

an equivalent one. This group is isomorphic to the group of permuta-

tions of all states belonging to the same equivalence subspace as this

state; hence, the degree of symmetry of a state is simply measured by

the population of the equivalence subspace of this state. The usefulness

of this definition will be demonstrated if we can derive a symmetry prin-
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ciple for this symmetry. This will require, however, a special assumption

which will restrict the scope of applicability of the final result. What we

must assume is that different states evolve (are mapped by N) into differ-

ent states. This is called the assumption of “non-convergent evolution.”

With this assumption, we see that the number of states equivalent to a

state cannot decrease since all states which are initially equivalent (cause-

equivalent) must evolve into final-equivalent (effect-equivalent) states (by

the equivalence principle) and no two states can evolve into the same

state. Of course, other entire equivalence subspaces may evolve into

the final equivalence subspace of this state (again, by the equivalence

principle.) This leads us to “the special symmetry evolution principle:”

“the degree of symmetry of the state of an isolated system cannot de-

crease during evolution but either remains constant or increases.” The

assumption of non-convergent evolution is generally true for microscopic

processes. However, when such processes are considered macroscopically

(i.e., by statistical methods), this assumption is generally not true, since,

for such macro-states, many different initial states can lead to the same

final state. In fact, such macro-states can be considered as equivalent

subspaces of micro-states and, of course, such subspaces can converge.

If, for a given process, N is time-reversal symmetric, we can say some-

thing special about the symmetry of evolving states, namely, that states

must evolve with a constant degree of symmetry. In other words, equiv-

alence subspaces cannot converge (otherwise the inverse process would

involve a decrease in symmetry.) In fact, we can see that, more gener-

ally, the existence of an inverse for N guarantees evolution with constant

symmetry.
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Conservation Laws

We now introduce a concept associated with physical systems that is

intimately connected with the concept of symmetry; this is the concept

of a conservation of the laws of nature, which occurs when some property

of the states of a physical system does not change in time as the system

evolves according to the laws of nature; i.e, we can write

Q(Nu) = Q(u),

where Q denotes the conserved property.

Any well-defined property of states, call it Q, naturally leads to a

decomposition of state space into equivalence subspaces, each having a

certain value of the quantity associated with this property. The associ-

ated equivalence relation, of course, then defines a symmetry group on

state space. Conversely, a symmetry of a physical system is associated

with a symmetry group on state space, which defines an equivalence re-

lation, which decomposes state space into equivalence subspaces, which

yields a labeling of states with a property; i.e., according to their mem-

bership in a subspace.

Now, if the physical symmetry associated with a symmetry group is a

symmetry of a law of nature in some system, then the temporal evolution

mapping, N , must preserve the associated equivalence subspaces; hence,

N will be a member of this symmetry group. In this case, Q(Nu) =

Q(u), and this property will be conserved. We have found, very easily,

a connection between symmetries of the laws of nature and conserved

properties; namely, if a symmetry of state space is also a symmetry of
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nature, then there will be a conserved property of such states. Let us

investigate this connection a little more carefully and see how and under

what conditions a symmetry of a law of nature will lead to a conserved

quantity.

We see that N must have the properties that we demand of the sym-

metry transformations on state space if it is to be a member of the

symmetry group on state space. (We might more properly turn this re-

striction around: we could say that only those symmetry groups which

contain the temporal development mapping represent symmetries of na-

ture which lead to conserved quantities.) This of course restricts N to

be invertible (for infinitesimal (continuous) transformations it need only

be infinitesimally invertible.) We saw earlier that the existence of N−1

guaranteed evolution with constant symmetry. Without this condition

(if we were considering a semigroup of symmetry transformations,) we

could have what we might call “partial conservation”: states belonging

to a given equivalence subspace (characterized by a certain value of a

quantity) could not evolve into inequivalent states (states with different

values of the quantity), but could evolve into an equivalence subspace

with a larger number of states (which all must now be characterized by

one value) due to convergence of equivalence subspaces.

Let us now begin by assuming we have identified a conserved quan-

tity; i.e., Q(Nu) = Q(u). This means that the equivalence subspaces of

state space determined by this quantity are preserved by the temporal

development mapping; hence, N must be a member of the symmetry

group of state space associated with the above equivalence relation; that

is, it must be a symmetry transformation of state space. This, of course,

makes the symmetry associated with this symmetry group also a symme-
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try of the laws of nature. So we find that to every conservation we can

ascribe a symmetry of the laws of nature.30 If we had instead begun with

only partial conservation (as defined earlier), then N would not need to

be invertible, but we would still be lead to a symmetry of the laws of

nature.

We need to note that there is the possibility that the property we

have identified as conserved is not assigned uniquely to all states; that

is, some states may be “undetermined” with respect to this property.

The symmetry group discussed above would not then, in general, be a

symmetry group of the entire state space of our system and this symmetry

could not be called a symmetry of the laws of nature. We add the qualifier

“in general” above because it still may be possible that the symmetry

group could be extended in some consistent manner to include mappings

of these undetermined states, so that it would be a symmetry group of

entire state space. We will see an example of this possibility later.

Let us summarize the above connections between symmetry and con-

servation. If a transformation group on state space is a symmetry group

of this space and this symmetry is also a symmetry of the laws of na-

ture for the associated system, then there will be a uniquely conserved

property in this system. A necessary and sufficient condition for a sym-

metry on state space to be a symmetry of nature is that the temporal

development mapping, N , be a member of the symmetry group.

We discovered in the last section, however, that for heterogeneous

systems, the one-to-one correspondence between state and process space

implies a similar correspondence between state and cause and effect sub-

spaces, which, in turn, implies that, if there is a symmetry group defined

on state space, there must be an isomorphic symmetry group on process
30Subject to the condition noted below.

- 89 -



III SYMMETRY

space. The symmetry associated with this symmetry group is then a

symmetry of nature. So, an equivalent sufficient condition for a symme-

try on state space to be a symmetry of nature (or vice-versa) is that the

system be analyzed in a heterogeneous manner.

We also found that if we discover a well-defined property of physical

states (such that we can assign all states to unique equivalence subspaces

in a consistent manner) which is conserved (or even only partially so) by

the laws of nature operating in this physical system, then there will be a

symmetry of the laws of nature uniquely associated with this property.31

Following Rosen and Freundlich (1978), we consider two general classes

of physical systems. First, we consider systems describable by linear vec-

tor spaces. Transformations on such a space can be in the form

Mui,= µiui,

where such states, ui, can be considered eigenstates ofM with eigenvalues

µi, although there may be states which are not eigenstates of M . In this

way the mapping M defines a property of states: they either have a

unique value µ, or are not assigned a value.

We now assume the mapping M is a symmetry of the laws of nature

of this system. We can then write MN = NM and apply this equation

to an eigenstate of M , ui:
31The general symmetry-conservation formalism discussed above was suggested, but

not carried through, by Rosen (1980).
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MNui = NMui

= Nµiui

= µiNui.

We have shown that if ui is an eigenstate of M with eigenvalue µi, then

so also is Nui. Consequently, equivalence subspaces of those states which

are eigenstates of M are preserved by N . What about those states which

are not eigenstates of M? Let us assume that the evolved state Nu is an

eigenstate of M with eigenvalue µ, but that u is not an eigenstate of M .

Then,

NMu =MNu

= µNu

= Nµu.

Using the invertibility of N , we multiply both sides of the above equation

by N−1. We find

Mu = µu,

in contradiction with our assumption. So all states which are not eigen-

states of M will remain so. Hence, this property which is assigned to

states by the symmetry mapping M is conserved.
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If we were considering non-invertible mappings (i.e., symmetry semi-

groups,) however, then the last step in the above demonstration could

not go through. In this case, states which are not eigenstates of M can

evolve into those which are. This is just the situation we described in

our general formalism earlier where we called this partial conservation.

Here, states which are eigenstates of M have the property labeled by µ,

conserved, but those states which are not eigenstates of M we can say

nothing about.

We next start by assuming we have at least partial conservation on

our linear vector space for the quantity associated with a mapping M

with eigenstates ui:

MNui = µiNui;

that is, Nui is also an eigenstate of M with the same eigenvalue as ui.

We then find

MNui = Nµiui

= NMui.

We can deduce a symmetry of nature from this last relation provided

that the ui form a complete set, since this will assure us that the above

relation will be true for all states on state space (a requirement that we

noted above in our general discussion.)

The second class of physical systems we consider are describable by

continuum state spaces; i.e., these are systems whose temporal devel-
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opment mapping is continuous: N(t, t1)u1, is a mapping of state u1, at

time t1, to a new state at some later time t. We can say immediately,

then, that only symmetries which are continuous can yield conservations

for these systems, since only groups of continuous symmetry transfor-

mations can contain a continuous temporal development mapping. Of

course such transformations, in contrast to discrete transformations, can

be represented by infinitesimals. The existence of inverses for such trans-

formations is guaranteed.

We again follow Rosen and Freundlich (1978), except we use a slightly

simpler and less general treatment which will suffice for our purposes. We

first assume a generalized form of Hamilton’s principle: that the action,

I =

t2ˆ

t1

dtL(N(t, t1)u1, t) (III.2.1)

—where L is the Lagrangian considered as a function of state and time—

under arbitrary variations of the mapping N , and for all u1, t1, t2, de-

pends only on the situation at the endpoints of the integral. Consider,

then, an arbitrary infinitesimal variation of N , so that

δI =

t2ˆ

t1

dtδL, (III.2.2)

where
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δL ≡ L(N ′(t, t1)u1, t)− L(N(t, t1)u1, t)

= ϵ[
d

dϵ
L(N ′(t, t1)u1, t)|ϵ=0]

= ϵ(
d

dt
Π+ F ). (III.2.3)

In the last line we assume we can in general write δL as the sum of a

term which can be written as a total time derivative and another which

does not in general contain such additive terms. Hamilton’s principle

then implies that

F ⊜ 0. (III.2.4)

This is just the equation of motion, and ⊜ indicates “equality if and only

if the equations of motion are satisfied.”

Now, if Hamilton’s principle can be satisfied without recourse to the

equations of motion for a particular variation; i.e., if

δL = ϵ
d

dt
R, (III.2.5)

then it follows that

d

dt
Q ⊜ 0, (III.2.6)
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where Q = Q(N(t, t1)u1, t) ≡ R − Π, and we have conservation of the

functionQ.32 This can also be put into our definitional form: Q(N(t, t1)u, t) ⊜

Q(u1, t1). So, those variations which satisfy the condition (III.2.5) lead

directly to a conservation. If applied to classical field theory, this re-

sult would reduce to the Bessel-Hagen extension of Noether’s theorem in

classical field theory.

We next consider symmetry transformations. As usual, consider a

mapping M of state space onto itself. We will, of course, consider in-

finitesimal mappings here. Now, for M to be a symmetry of a law of

nature in these systems, it must, as before, commute with N :

MN(t, t1) = N(t, t1)M, (III.2.7)

so that the temporal development of a symmetry transformed state is

equivalent to a particular infinitesimal variation of the temporal devel-

opment itself, which we can write as

N ′ ≡MN(t, t1). (III.2.8)

Hamilton’s principle must then hold for the transformed action,

I =

t2ˆ

t1

dtL(N ′(t, t1)u1, t). (III.2.9)

If we expand this integral to first order in the variation, we find
32In the following, Π and all capital letters following O are to be considered functions

of state and time.
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I =

t2ˆ

t1

dt[L(N(t, t1)u1, t) + δL]. (III.2.10)

We again allow an arbitrary variation of N (which we will indicate by δ′):

δ′I =

t2ˆ

t1

dt[δ′L+ δ′δL]. (III.2.11)

Hamilton’s principle can be satisfied in one of two ways; either

δL = ϵ
d

dt
R (III.2.12)

or

δ′δL ⊜ ϵ
d

dt
U. (III.2.13)

The first way yields a conservation as before of Q = R − II. The

second possibility, however, does not yield a conservation. In fact, the

situation is much the same as before we applied the symmetry transfor-

mation to our system: the existence of a symmetry transformation does

not necessarily lead to a conservation, although for some symmetry trans-

formations we do have a formula for connecting the transformation to a

conserved quantity. This situation may seem, at first, to conflict with

our general formalism and also with conventional Noether’s theorem. In

the familiar, conventional Noether’s theorem all continuous symmetries
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are associated with conservations; however, conventional Noether’s the-

orem simply defines a symmetry transformation to be one which leaves

the action invariant. The first condition (III.2.12) is then automatically

satisfied. What we realize here, in comparing with our general formal-

ism, is that we have not demanded that the symmetry transformation of

our laws of nature is also a symmetry of physical state space. It must

be, then, that the transformations defined by condition (III.2.13) (which,

we note, is also a condition involving the Lagrangian) are not symme-

try transformations on state space and, hence, force a non-heterogeneous

analysis of our system.33

These results have their most obvious application in classical field

theories (and, in fact, similar results have been found for these theories,)

but, of course, have a broader scope only limited by the fundamental

physical assumptions made at the beginning of the discussion. As such,

this result could be called a meta-Noether’s theorem. We also note that

these results can be further generalized to allow for symmetry variations

which vary and depend on the time of the object state, but the basic

connections between symmetry and conservation remain the same for

such generalizations.34

We can also obtain an inverse meta-Noether’s theorem. If we start by

assuming conservation of Q (i.e., equation (III.2.6)), then we can write

d

dt
Q = f(F ), (III.2.14)

33This will be shown explicitly for field theories in the next chapter. Rosen and
Freundlich (1978) and Rosen (1980) do not come to this conclusion since they do not
consider non-heterogeneous systems.

34Rosen and Freundlich (1978) and Rosen (1980) obtain these generalizations.
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where f(0) = 0. Now, if we can find a variation of N such that

f(F ) = F, (III.2.15)

then we immediately obtain equation (III.2.12) with the help of the def-

inition (III.2.3). We can now reverse our reasoning used to obtain meta-

Noether’s theorem: equation (III.2.10) and, therefore (III.2.9), must be

valid actions; therefore, we can write down equation (III.2.8) and identify

this variation as a symmetry of the equation of motion.

Now the condition (III.2.15) is a relation between the functional form

of our conserved function on state space, Q, and the equations of motion.

We can interpret this condition in light of our general formalism as the

condition that Q assigns values to states in a unique and consistent man-

ner. Inability to satisfy this condition would suggest that this conserved

property is in some sense an “ill-defined” one.

We finally note that we can always associate a variation of L with

a conserved quantity, even though it may not be a symmetry transfor-

mation, as long as f(F ) contains a linear term in F . Write equation

(III.2.14) as

d

dt
(P − S) = f(F )

d

dt
P = g(F ) + aF +

d

dt
S

ϵ
d

dt
P = δL+ ϵg(F ), (III.2.16)

where a is some constant and g(F ) is like f(F ) except containing no linear

terms in F . Now δL becomes equal to a total time derivative of a function

of state and time upon satisfaction of the equation of motion; therefore,
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δL is in fact a valid variation of the Lagrangian. Such transformations are

generally called “Noether transformations.” We also note that δL could

in general contain a term of the form ϵg(F ), so we may redefine δL as

δL ≡ e(
d

dt
Π+ g(F ) + F ), (III.2.17)

so that the class of Noether transformations becomes identical to those

transformations leading to equation (III.2.5).35 With this more general

δL, satisfaction of condition (III.2.15) requires

g(F ) + F =
d

dt
T. (III.2.18)

If f(F ) contains no linear term in F , then it cannot be related to a

variation of L.

III.3 Symmetry as an Abstraction Tool

Although the concept of symmetry in physical systems is most com-

monly thought of as a useful tool in tackling specific problems, we have

found here a much more fundamental role for this concept. We have,

in the previous pages of this chapter, developed an intimate connection

between the concept of causality and concepts of symmetry. Just as

in mathematical fields such as geometry and group theory symmetry is

used as a means of abstraction to gain a deeper and broader understand-

ing of those fields, here symmetry has been used as an abstraction tool,
35In other words, those transformations associated with a conserved quantity. The

relevance of these transformations will become apparent in the next chapter when we
discuss symmetry-conservation formalism in classical field theory.
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translating the epistemological content of the causal relation into a more

abstract and tractable form. We have also found a direct connection

between these abstract ideas and the symmetries of physical systems.

Furthermore, we demonstrated a simple and direct connection between

these two concepts and the fundamental concept of a conserved prop-

erty. This concept of conservation is so fundamental because it is those

properties which are conserved (or sometimes only partially so) that are

identified as fundamental properties. Our general approach at the be-

ginning of this chapter lead us to consider a class of systems that are

usually not considered as candidates for physical systems; namely, non-

heterogeneous systems. In fact, we found that our two main results,

the symmetry principle and meta-Noether’s theorem—both intuitively

straightforward results—breakdown for such systems. We already noted

how in the case of the symmetry principle such a breakdown indicates

a flawed application of the causal relation. In a similar way, breakdown

of a symmetry-conservation formalism indicates a flawed defined prop-

erty, which could lead to a flawed conception of object. We have again,

then, made connection with our remarks at the end of Chapter 2, where

we predicted that inconsistency in some underlying element of symmetry

could lead to a confused concept of object.
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IV Gauge Theory

IV.1 The Action in Field Theory

The Action functional is a useful tool for both classical and quantum

physics. In quantum field theory it is used either in the S-matrix approach

or in the Feynman Path Integral approach to yield physical quantities.

Its significance lies in its direct connection to measurable quantities, its

constructive and exact (not approximate) nature, and the connection it

provides with classical concepts and results. Classically it generates the

canonical transformation which takes the canonical variables from one

time to another. The Action can be written as

I =

ˆ τ2

τ1

d4xL[x] (IV.1.1)

where L is the Lagrangian density. We can construct the possible La-

grangians for field theory by placing certain demands or restrictions on

the Action.36 First, in order that our physics obeys the postulates of

special relativity, we require that the Action be Poincaré invariant. In

particular, a necessary and sufficient condition for translation invariance

is that the Lagrangian be a function of the fields and their derivatives

only.

Second, we require that the Lagrangian depends on the fields only at

one space-time point. This constrains us to local field theories.

Thirdly, the Action must be real. This demand carries over from clas-

sical physics where imaginary terms lead to non-conservation of proba-

bility.
36See, for instance, Ramond (1981), Section I.5.
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Fourth, we require that the Action leads to (classical) equations of

motion containing derivatives no higher than second-order. Higher order

derivatives can lead (classically) to non-causal solutions. We can satisfy

this condition by only allowing one or two ∂µ operators in a term in the

Lagrangian.

In addition to these restrictions on the Action, we will later introduce

ad hoc symmetry requirements which will fix the dynamical properties

of the fields.

Placing these four demands on the possible forms of the Lagrangian,

we can write down the most general Lagrangians.

The requirement of Lorentz invariance divides up our problem into

distinct possibilities. Our canonical variables are fields, which are contin-

uous functions of the coordinates. These fields then must have definite

transformation properties under the action of the Lorentz group: that

is, they must transform under a definite representation of the Lorentz

group. They can transform either as scalars, spinors, vectors, tensors,

etc. These different transformation properties distinguish particles ac-

cording to their spin. Fields which transform as scalars under Lorentz

transformations describe particles with spin-0. Those which transform as

spinors describe particles with spin-1/2. Those which transform as four-

vectors have spin-1, and those which transform as higher rank tensors

and/or spinors have higher spins.

In our analysis of possible field theories, we will be considering the

fields as classical; i.e., as canonical coordinates which are functions of

the space-time coordinate. We can apply the methods and analysis of

classical mechanics here. Final justification for any results and their inter-

pretation, of course, comes from quantizing the theory (as, for instance,
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using the Feynman path integral approach) and its renormalization. We

will note where necessary what modifications need to be made to these

results for a valid quantized theory We will be, naturally, stressing those

aspects concerned with symmetry.

Symmetry and Conservation

Before proceeding to consider the possible field theoretic Actions, we

consider one more general property of the Action, namely Noether’s the-

orem. Instead of proceeding from our general result of the last chapter,

it is more instructive to proceed from prior principles; although we will,

of course, find that our results will parallel those that we found for gen-

eral continuous temporal development. We will again find that there are

symmetry transformations that do not lead to a conservation and that

there are Noether transformations (transformations associated with con-

servations) which are not symmetry transformations. Two questions will

arise due to the more specific nature of our problem: how do we explic-

itly affect a transformation for a given system, and how do we define a

symmetry transformation?

Our systems are defined by the Action. Since it is written as an

integral of a function of the fields and their derivatives (the Lagrangian),

it can be made to vary either through a change in the integration measure

(due to an implicit space-time coordinate variation) or through an explicit

variation of L (usually called a form variation) or a variation in L induced

by a variation of the fields. The variation of the fields, in turn, can either

be explicit or induced by a variation of the space-time coordinates.

We also note that since we are using a manifest relativistic treatment,

a “conservation condition” will not involve only one of the coordinates
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specially (i.e., the time); rather, what is conserved for field theories is

a four-current and the conservation condition is a continuity equation.

However, if certain space boundary conditions are imposed (namely, that

the fields go to zero at infinity), then time constants can be identified

(these are the charges.)

In the following ϕ(x) is any local field or collection of fields (all field

indices are suppressed) and x = (xµ), u = 0, 1, 2, 3 are our space-time

coordinates. The summation convention is assumed.

Let us begin by putting together the above possible means of varying

the Action and consider its most general variation. Consider the following

infinitesimal transformations:

x→ x̄ = x+ δx (IV.1.2)

ϕ(x)→ ϕ̄(x) = ϕ(x) + δ0ϕ(x, ϕ(x), ∂µϕ(x)), (IV.1.3)

where δ0, is the explicit, or functional, change; i.e., the change at one

space-time point (hence ∂µ commutes with δ0),37 and

L(ϕ(x), ∂uϕ(x))→ L̄(ϕ(x), ∂uϕ(x)) = L(ϕ(x), ∂uϕ(x))+δ0L(ϕ(x), ∂µϕ(x)).

(IV.1.4)

Let us write this explicit change in L as

δ0L = ∂µδ0L
µ
1 + δ0L2, (IV.1.5)

37See Boyer (1966) for a discussion of the importance of this variation.
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thus separating the variation into a divergence and a non-divergence

term. The total change in L is then

δL = δ0L+ δxµ∂µL+ δ0ϕ[∂µΠ
µ + EL], (IV.1.6)

where E are the Euler-Lagrange operators:

E = −∂µ
∂

∂[∂µϕ]
+

∂

∂ϕ
,

and

Πµ ≡ Πµ(L) =
∂L

∂[∂µϕ]
.

(Both E and Πµ(L) can easily be generalized for Lagrangians containing

higher order derivatives of the fields.38) The change in the integration

measure given by

d4x→ d4x̄ = d4x+ δ(d4x) = d4x+ d4x∂µδx
µ.

The infinitesimal variation in the Action is then
38See, for instance, Boyer (1967) and Rosen (1972). In addition, relating to the

following discussion of Noether’s theorem, see Rosen (1974a, 1974b), Palmieri and
Vitale (1970), Candotti et al. (1970, 1972) and references therein.
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δI =

ˆ

V̄

L̄(ϕ̄(x̄), ∂µϕ̄(x̄))d
4x̄−

ˆ

V

L(ϕ(x), ∂µϕ(x))d
4x (IV.1.7)

=

ˆ

V

[δL]d4x

where

[δL] = ∂µ[Lδx
µ +Πµδ0ϕ+ δ0L

µ
1 ] + δ0ϕEL+ δ0L2 (IV.1.8)

Equation (IV.1.8) is a formal expression for the most general varia-

tion in the Action due to the arbitrary variations (IV.1.2), (IV.1.3) and

(IV.1.4). For particular variations and particular Actions, it may be pos-

sible to write [δL] in an essentially different way than that appearing

in (IV.1.8), and this of course is essential to Noether’s theorem, as we

will see later. We now apply our generalized Hamilton’s principle to

equation (IV.1.8). Hamilton’s principle involves an arbitrary variation

of the canonical coordinates only—the fields in this case. It is also the

principle for deriving the field configurations for a given system —given

L—and so a form variation of L would make no sense. Hamilton’s prin-

ciple then says that the physical field configurations are those for which

the variation of the Action (under the above condition) depends only

on the situation at the boundary surface of integration. We then find

immediately from equation (IV.1.8) the equations of motion:

F ≡ EL ⊜ 0 (IV.1.9)
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—where again ⊜ indicates equality if and only if the equation of motion

hold (i.e., when ϕ is set equal to the physical field configurations)—as a

necessary and sufficient condition for Hamilton’s principle to hold.

Noether Transformations

We now proceed to find the most general class of Noether transformations—

those transformations which are variations of the Action leading to a

continuity equation. These can be found, in fact, by demanding that the

variation of the Action satisfy Hamilton’s principle without recourse to

the equation of motion, except that we do not restrict the variations to

field variations, but we must make the restriction that

δ0L2 ⊜ 0; (IV.1.10)

that is, the form variation of the Lagrangian is restricted in such a way

that its non-divergence part must go to zero upon satisfaction of the

equations of motion. We can see this as follows. Let39

[δL] = ∂µk
µ (IV.1.11)

39Candotti et al. (1970) generalized the possible variation of [δL] to include an
additional term which goes to zero when the equations of motion are satisfied—
i.e., [δL] = ∂µk

µ + k2, where k2⊜ 0—and still obtained Noether transformations.
Rosen (1972) adopted their generalization and further generalized the approach by
including the term δ0L2 above. However, Rosen failed to realize his generalization
made that of Candotti et al. redundant. We can see this by noticing that the term
k2 above can be absorbed into δ0L2 without any loss of generality, since both ⊜ 0.
This disallowed Rosen and Candotti et al. from discovering the connection between
the most general Noether transformations and Hamilton’s principle, leading them to
conclude that there is no general connection between Noether transformations and
symmetry transformations.
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so that

∂µZ
µ = g, (IV.1.12)

where

Zµ = Lδxµ +Πµδ0ϕ+ δ0L
µ
1 − kµ (IV.1.13)

and

g = −δ0ϕEL− δ0L2. (IV.1.14)

Condition (IV.1.10) gives us

∂µZ
µ ⊜ 0. (IV.1.15)

The situation is actually much simpler than it appears above. As we

indicated earlier, the terms above are formal terms for arbitrary varia-

tions. In particular, the condition (IV.1.11) will force cancellations in

equation (IV.1.13). Let us examine equation (IV.1.8) given the condi-

tion (IV.1.11). For the right hand side of equation (IV.1.8) to be a total

divergence depends solely on the behavior of the penultimate term, since

only it and the last term are not in general divergence terms and the

last term is by definition not a divergence. There are two ways, then, to

satisfy conditions (IV.1.10) and (IV.1.11).
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First we can have

δ0ϕEL = ∂µf
µ (IV.1.16)

and

δ0L2 = 0, (IV.1.17)

in which case we have

∂µf
µ ⊜ 0 (IV.1.18)

if δ0ϕEL is not identically zero. In this case we call equation (IV.1.16) a

“weak continuity equation” of the “first kind.”40 (If δ0ϕEL is identically

zero, we obtain what is called a “strong continuity” equation. These do

not properly lead to conservation laws.) These continuity equations are

the most familiar and are those that follow from conventional Noether’s

theorem. In fact, condition (IV.1.17), which requires that the form varia-

tion of the Lagrangian be a total divergence, reduces the above treatment

to the conventional approach.41

There is a second possibility for associating variations with a conti-

nuity equation. We can have
40We follow Rosen (1974a) in this nomenclature.
41We take the conventional approach to be the Bessel-Hagen extension (see Candotti

et al. (1970)) of Noether’s theorem, which is equivalent to this treatment.
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δ0ϕEL = ∂µf
µ
1 + f2 (IV.1.19)

where f2 is a non-divergence part and

f2 ⊜ 0 (IV.1.20)

because of condition (IV.1.10). We also see that condition (IV.1.17) is

not necessary but rather

f2 + δ0L2 = 0 (IV.1.21)

must be true. Again equation (IV.1.19) is a weak continuity equation—

i.e.,

∂µf
µ
1 ⊜ 0 (IV.1.22)

—this time of the “second kind”.42Equations (IV.1.19)–(IV.1.21) then

define the most general Noether transformations for a given Lagrangian

(f2 = 0 reduces (IV.1.19)–(IV.1.21) to (IV.1.16) and (IV.1.17).)

This leaves coordinate transformations arbitrary, meaning they are

not relevant to the existence or construction of a conserved current.43

The same is true for form variations of the Lagrangian equal to a to-
42See footnote 40
43See Boyer (1967) for a discussion of this point. Rosen (1974a) also discusses this

point, although he seems to add some mystery to it.
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tal divergence. As for the non-divergence part of the Lagrangian form-

variation, it obviously does not contribute to the conserved current, fµ
1 ,

and since it is fixed by condition (IV.1.21) it is not concerned with the

existence of the conserved current either. So no form variation of the

Lagrangian, in general, is concerned with Noether transformations. This

leaves pure field variations (equation (IV.1.3)) as the only candidates for

Noether transformations.

This result is satisfying since our general analysis of the last chap-

ter lead us to expect that only the canonical coordinates should be in-

volved in the construction of a physical conserved object. We also see

the similarity between equations (IV.1.19) and (III.2.18) (the expression

we derived for general continuous development systems.) This confirms

that we have, in fact, discovered the most general variations leading to

Noether transformations.

To summarize, a necessary and sufficient condition for a transfor-

mation to be a Noether transformation for a given system is that the

consequent variation of the Action satisfy Hamilton’s principle without

recourse to the equations of motion (where only the fields need to be

varied, as normally dictated by Hamilton’s principle.) An equivalent

necessary and sufficient condition involves the equations of motion and

is given by equations (IV.1.19) and (IV.1.20).

Symmetry Transformations

The previous discussion of Noether transformations was unambiguous.

Once we had decided we wanted to find the most general transforma-

tions of a given system leading to a continuity equation, the procedure

was straight-forward. The varied approaches and results one finds con-
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cerned with symmetry-conservation investigations in field theory arise

from differing definitions of symmetry transformations, many of which

even involve the concept of the Noether transformation in their defini-

tion.44

In the last chapter we began from first principles to develope a defini-

tion of a symmetry transformation. We then, in stages, made this concept

more specific and found a definition for general, continuous, temporal,

development systems. We now again make this definition more specific,

to apply to field theory; hence, our definitions will be unambiguous and

traceable to first principles.

For symmetry transformations the question is not only what types

of variations of the Action are candidates for the infinitesimal variations

connected with symmetries, but what should be the condition on the

Action for a variation to represent a symmetry. We found in the last

chapter that a symmetry mapping, M , commutes with the temporal

development mapping, N . In field theory N is given by the field solutions

(physical fields), which we label by ϕ0; i.e., we have the correspondence

N ⇐⇒ ϕ0. (IV.1.23)

For M to act on N—as we allowed it to in the last chapter when we

defined N ′ =MN as an infinitesimal variation of N—it must vary these

field solutions; i.e.,

MN ⇐⇒ ϕ0 → ϕ0 = ϕ0 + δm0 ϕ|ϕ=ϕ0 (IV.1.24)

44See, for instance, Jackiw (1972), Section II.
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or more generally a candidate symmetry variation must vary the fields

M ⇐⇒ ϕ→ ϕ̄ = ϕ+ δm0 ϕ. (IV.1.25)

We see that symmetry transformations are properly associated only with

variations of the fields, not with variations of the space-time coordinates

nor with form variations of the Lagrangian.

At this point, it may seem that the proper way to define a symme-

try transformation is by direct reference to, and as a condition on, the

equations of motion—or more specifically their solutions—with no need

to refer to the Action. In principle, for classical field theory this is the

most straight-forward way to proceed. In quantum field theory, however,

the equations of motion cannot be relied upon so heavily: so going so far

as to formulate the condition for a symmetry transformation in terms of

the equations of motion would obviously not be fruitful. Reference to

the equations of motion in defining a symmetry transformation, as in the

relation (IV.1.24), is allowed (as, in fact, such reference is made expressly

so in deriving quantum electrodynamics through the process of second

quantization.) The condition, however, should be one on the Action,

which should therefore be achieved by letting the symmetry variation

act on general ϕ, as through the relation (IV.1.25).

Let us write down this condition on the field solutions. First we note

one last correspondence:

NM ⇐⇒ ϕ̄→ (ϕ̄)0 = (ϕ+ δm0 ϕ)
0. (IV.1.26)
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Our commutation condition for M then yields the condition: a symme-

try transformation must map field solutions into field solutions in the

transformed system; i.e,

NM = NM ⇐⇒ ϕ0 = (ϕ̄)0. (IV.1.27)

Consider the variation of the equation of motion under some variation of

the fields:

EL(ϕ̄, ∂µϕ̄) = EL(ϕ, ∂µϕ) + δϕ(EL). (IV.1.28)

Let this be a symmetry variation, so that

EL(ϕ̄, ∂µϕ̄)|ϕ̄=(ϕ̄)0=ϕ0 = EL(ϕ, ∂µϕ)|ϕ=ϕ0 + [δmϕ (EL)]ϕ=ϕ0 , (IV.1.29)

yielding

[δmϕ (EL)]ϕ=ϕ0 = 0 (IV.1.30)

—the obvious condition that the equation of motion must be invariant

under a symmetry variation at its solutions. It also becomes obvious

that we cannot infer anything about the response of the structure of the

equations of motion—and consequently nothing about the behavior or

structure of the Lagrangian or Action—from their behavior at one (or

several) values of the fields. It seems that the definition of a symmetry
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transformation needs to be further specified to yield any more restrictive

conclusions concerning the Action.

Before we do this, however, let us take this narrow definition a little

further by paralleling our analysis of the last chapter. Namely, since

Hamilton’s principle is a principle whose application yields the physical

field solutions, it must hold for the transformed Action,

I =

ˆ
d4xL(ϕ̄(x), ∂µϕ̄(x)), (IV.1.31)

which we can write as

I =

ˆ
d4x[L(ϕ(x), ∂µϕ(x)) + δmϕ L], (IV.1.32)

where

δmϕ L = ∂µΠ
µδm0 ϕ+ δm0 ϕEL. (IV.1.33)

Allowing an arbitrary variation of this Action we find

δI =

ˆ
d4x[δϕL+ δϕδ

m
ϕ L]. (IV.1.34)

Again, as in the last chapter, we find we can satisfy Hamilton’s principle

for this Action either by having
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δmϕ L = ∂µk (IV.1.35)

or by

δϕδ
m
ϕ L ⊜ ∂µk

′. (IV.1.36)

The first condition is equivalent to exactly the sort of wider defini-

tion of a symmetry transformation that we mentioned in the preceding

paragraph; namely, it is equivalent to requiring that the symmetry trans-

formation be such that the equations of motion be form invariant; or, in

other words, equation (IV.1.30) should hold not only for the field solu-

tions but for all ϕ. We can see this easily as follows. If δmϕ L is a total

divergence then EL is invariant, since the Euler derivative of a total

divergence is identically zero, by a well-known theorem in variational

calculus45—which also states that if EL is invariant under a variation

of L, that variation must be a total divergence. We also see that this

broader definition of a symmetry variation, by leading to the condition

(IV.1.35), leads immediately to a continuity equation of the first kind.

However, there remains the possibility of condition (IV.1.36). Since

condition (IV.1.35) and (IV.1.36) are mutually exclusive, it must be that

condition (IV.1.36) is obtained for those transformations which do not

leave the equations of motion form invariant, but only map field solutions

to field solutions. In fact, condition (IV.1.36) can be shown to be the

necessary and sufficient equivalent of equation (IV.1.30).

45See, for instance, Courant and Hilbert (1953), p. 193.
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It now becomes evident, especially in light of our general formalism

of the last chapter, that the above proposed “extension” of, or broader

definition of a symmetry transformation (as a condition on all ϕ), is

really a demand that this symmetry also be a physical symmetry: i.e., a

symmetry on physical state space.

We can summarize the situation as follows. Condition (IV.1.30) is the

condition on a transformation such that it be a symmetry of the laws of

nature. Condition (IV.1.36) (which is equivalent to condition (IV.1.30)

written instead as δmϕ (EL) ⊜ 0) is a condition that the transformation

be a symmetry of Nature but that it not be a symmetry on physical state

space. Condition (IV.1.35) requires that the transformation be a sym-

metry of Nature and a symmetry on physical state space. Of course, this

last requirement is exactly the requirement that a transformation lead

to a conservation under our general symmetry-conservation formalism,46

and condition (IV.1.35) is in fact identical with our condition for Noether

transformations which lead to a continuity equation of the first kind.47

As for those field transformations given by equations (IV.1.19) and

(IV.1.20), which lead to a continuity equation of the second kind, a simul-

taneous non-divergence form transformation of the Lagrangian is required

(given by equation (IV.1.21)), hence these transformations are explicitly

non-canonical and cannot be related to a symmetry of Nature. From our

results of the last chapter, we see that these should be transformations,

which when associated with a property of states, such property will be

an “ill-defined” one.48

46Cf. Section III.2.
47Cf. equation (IV.1.16).
48Cf. Section III.2. Other investigators have missed these connections because they

did not consider non-heterogeneous systems, for which there is a distinction between
a symmetry of Nature and a physical symmetry.
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We need to make a special note about space-time symmetries. Al-

though we have made it clear that we are to properly only consider func-

tional variations (i.e., δ0) in the fields when considering symmetry trans-

formations, when investigating physically meaningful space-time symme-

tries, conditions are placed on the fields, ϕ(x), taking into account their

dependency on the space-time coordinates. In other words, the condition

is given on δϕ, which is equal to

δϕ = δ0ϕ+ δxµ∂µϕ, (IV.1.37)

so that we should consider

δ0ϕ = δϕ− δxµ∂µϕ, (IV.1.38)

as our symmetry variation. For instance, translation invariance requires

of the fields that under a translation there should be no change in the

fields so that

δϕ = 0, (IV.1.39)

which means that (since δxµ = ϵµ for a translation)

δ0ϕ = −ϵµ∂µϕ (IV.1.40)
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is the proper variation. It is still only the variation δ0ϕ, however, that is

being considered and that is associated with the symmetry transforma-

tion and Noether transformation. Equation (IV.1.38) merely gives the

correct expression for δ0ϕ given a physical requirement on δϕ; it does not

indicate that we are separately considering variations of the space-time

coordinates.

If we have found a continuity equation associated with a variation,

then if we integrate it over all space and over a finite time interval we

find

t2ˆ

t1

dx0
+∞ˆ

−∞

d3x∂µj
µ ⊜ 0

or

t2ˆ

t1

dx0 ∂
∂x0

+∞ˆ

−∞

d3xj0 +

t2ˆ

t1

dx0
+∞ˆ

−∞

d3x∂ij
i ⊜ 0. (IV.1.41)

The last term is a surface term which will vanish if the fields vanish

at infinity. In this case

+∞ˆ

−∞

d3xj0(t2,x)−
+∞ˆ

−∞

d3xj0(t1,x) ⊜ 0. (IV.1.42)

We can now identify
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Q(t) ≡
+∞ˆ

−∞

d3xj(t,x) (IV.1.43)

as a conserved charge, since IV.1.42 is true for arbitrary time intervals;

i.e., we can write

dQ

dt
⊜ 0. (IV.1.44)

Finally, we note that we may wish to investigate certain approximate

symmetries. The field variations associated with an approximate sym-

metry will cause the variation of the Action to contain a non-divergence

term which does not go to zero upon imposition of the equations of mo-

tion. This can happen if and only if equation (IV.1.19) holds but equation

(IV.1.20) does not, so that

∂µf
µ
1 ⊜ −f2. (IV.1.45)

Examples

The term δ0ϕEL can be written out in a convenient form. Since the total

variation in L due to a variation δ0ϕ is

δϕL = (
∂L

∂ϕ
)δ0ϕ+Πµ∂µδ0ϕ

= ∂µ(Π
µδ0ϕ) + δ0ϕEL, (IV.1.46)
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we can write

δ0ϕEL = δϕL− ∂µ(Πµδ0ϕ). (IV.1.47)

We can also write δϕL in general as

δϕL = (δϕx − δxµ∂µ)L

= δϕxL− ∂µ(δxµL) + L∂µδx
µ, (IV.1.48)

where δϕxL is the variation in L due to variations of ϕ and x. For pure

field transformations (internal symmetries) the last two terms in equation

(IV.1.48) are zero and the condition for such a transformation to yield a

continuity equation of the first kind is

δϕL = 0, (IV.1.49)

and the conserved current is

jµ = Πµδ0ϕ. (IV.1.50)

For space-time symmetries the condition for a continuity equation of the

first kind is

δϕxL = −L∂µδxµ, (IV.1.51)
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and the conserved current is

jµ = Πµδ0ϕ+ Lδxµ. (IV.1.52)

We note that the current can always be defined, even if equation (IV.1.51)

or (IV.1.49) does not hold and jµ is not conserved.

Transformations with which we associate symmetries form groups.

In particular infinitesimal canonical transformations form Lie groups; if

space-time transformations are being considered the fields must trans-

form under a representation of the space-time transformation group, oth-

erwise they will transform under a representation of some other Lie group.

The fields, as canonical coordinates, in general obey the Lie bracket prod-

ucts

[Π(t,x), ϕ(t,y)] = δ(x− y) (IV.1.53)

[Π(t,x),Π(t,y)] = [ϕ(t,x), ϕ(t,y)] = 0, (IV.1.54)

where Π is the appropriate canonical conjugate. In quantum field theory,

where the fields are quantized operators, these brackets become (anti-

)commutators;49 in classical field theory they are Poisson brackets. The

abstract Lie group generators obey the algebra

[Ta, Tb] = −ccabTc (IV.1.55)
49In this case appropriate factors of i also need to be inserted into the commutators

because of hermicity requirements on the operators.
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where ccab are the structure constants. Their representatives, defined

through the field variation

δ0ϕ = ϵµDµϕ(x), (IV.1.56)

also obey this algebra.

The conserved charges are also representatives of the generators of

the transformation:

δ0ϕ = [Q, ϕ]. (IV.1.57)

We can prove this as follows. From equations (IV.1.43) and (IV.1.52) we

have

[Q(t,y), ϕ(t,x)] =

ˆ
d3y[Π0(t,y)δ0ϕ(t,y) + L(t,y)δt, ϕ(t,x)]

=

ˆ
d3y{[Π0(t,y), ϕ(t,x)]δ0ϕ(t,y)

+ Π0(t,y)[δ0ϕ(t,y), ϕ(t,x)] + [L(t,y)δt, ϕ(t,x)]}

= δ0ϕ(t,x) +

ˆ
d3y{Π0(t,y)[δ0ϕ(t,y), ϕ(t,x)]

+ [L(t,y)δt, ϕ(t,x)]},

where we have used equation (IV.1.53) to obtain the first term. In the

last two terms, δ0ϕ and L, as functionals of ϕ and ∂µϕ, only have non-

vanishing Lie bracket products due to their dependence on ∂0ϕ. We can

write generally
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[F (ϕ(t,y), ∂µϕ(t,y), ϕ(t,x)] =
∂F

∂[∂0ϕ]
[∂0ϕ(t,y), ϕ(t,x)].

Consequently we find

[Q(t,y), ϕ(t,x)] = δ0ϕ(t,x) +

ˆ
d3y{Π0(t,y)

∂δ0ϕ

∂[∂0ϕ]
[∂0ϕ(t,y), ϕ(t,x)]

+
∂L

∂[∂0ϕ]
δt[∂0ϕ(t,y), ϕ(t,x)]}

= δ0ϕ+

ˆ
d3y{Π0(t,y)(−δt)

+ Π0(t,y)δt}[∂0ϕ(t,y), ϕ(t,x)],

where in the last line we have used equation (IV.1.38) to evaluate the

first derivative term, and have assumed that

∂δϕ

∂[∂0ϕ]
= 0,

which is to say that δϕ is not a function of ∂0ϕ, which is true for all

symmetries which we will encounter. We also made the identification

Π0 ≡ ∂L

∂[∂0ϕ]

for the canonical conjugate. The term in brackets above vanishes, and

we have completed our proof. We note that we have made no use of

the time independence of Q, so this result holds for conserved as well as

non-conserved charges.
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We now apply the previous analysis to examples of well-known trans-

formations, still keeping our Lagrangian unspecified. We have already

mentioned space-time translations. We found that for these transforma-

tions δxµ = ϵµ, however, they can be represented more generally as

δxµ = ϵρPρx
µ, (IV.1.58)

where

Pρ = −∂ρ (IV.1.59)

is the most general representation of the four translation generators.

In this case we can write (in agreement with equation (IV.1.39) and

(IV.1.40))

δ0ϕ = −ϵµ∂µϕ

so that

δ0ϕEL = −ϵµ∂µϕ(
∂L

∂ϕ
− ∂νΠν)

= −ϵµ(∂µL− ∂µϕ∂νΠν)

= ϵν∂µθ
µν
c , (IV.1.60)

where
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θµνc = Πµ∂νϕ− gµνL (IV.1.61)

is the canonical energy momentum tensor. Apparently all Lagrangians

possess translation symmetry and have associated a conserved quantity,

θµν . This is because we have chosen L not to depend explicitly on xµ

and this guarantees invariance under translations, as can be seen from

equation (IV.1.51). Equation (IV.1.61) could have also been obtained

directly from equation (IV.1.52).

The generators obviously obey

[Pµ, Pν ] = 0 (IV.1.62)

so that the structure constants are zero. The conserved charge is

Pµ =

ˆ
d3xθ0µ

=

ˆ
d3x(P0∂µϕ− g0µL), (IV.1.63)

which obeys

ϵµ[Pµ, ϕ(x)] = −ϵµ∂µϕ. (IV.1.64)

Next we consider Lorentz transformations. The space-time coordi-

nates transform as
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δxµ = ϵµνxν , (IV.1.65)

where ϵµν is an infinitesimal antisymmetric tensor parameter which con-

sequently represents six independent parameters. This can be written

as

δxµ = −(1/2)ϵρσLρσx
µ, (IV.1.66)

where the six generators are defined as

Lµν ≡ (xµ∂ν − xν∂µ). (IV.1.67)

These obey the algebra

[Lµν , Lρσ] = gνρLµσ − gµρLνσ − gνσLµρ + gµσLνρ, (IV.1.68)

which is the Lie algebra of SO(3, 1). Lµν , however, are not the most

general representation of the generators of this group. Operators which

obey the same algebra as the Lµν but instead act directly on the space-

time indices can be added to the Lµν .50 This most general representation

is given by
50See, for example, Ramond (1981), Section I.2.
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Mµν ≡ (xµ∂ν − xν∂µ) + Σµν . (IV.1.69)

The antisymmetric tensor matrix Σµν is called the spin matrix. There are

distinct possibilities for the Σµν and it is these which determine the dis-

tinct representations of the Lorentz group. As we noted in the beginning

of this chapter, the fields must transform under definite representations

of the Lorentz group and are therefore intimately connected to Σµν .

For instance, scalar fields are defined to transform as Lorentz scalars

so that

ϕ′(x′) = ϕ(x) (IV.1.70)

under a Lorenz transformation. This means

δϕ = 0 (IV.1.71)

or

δ0ϕ+ ϵµνxν∂µϕ = δ0ϕ+ 1/2ϵρσLρσϕ = 0

which yields

δ0ϕ = −(1/2)ϵρσLρσϕ. (scalar fields) (IV.1.72)
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Comparing with the most general representation

δ0 = (1/2)ϵρσMρσϕ (IV.1.73)

tells us that Σµν = 0 for scalar fields. Similarly it can be shown that

Σµν
(ij) = (1/2)σµν

ij (IV.1.74)

for Dirac spinors51 (ij are the spinor indices), and

Σµν
(αβ) = gµαg

ν
β − g

µ
βg

ν
α (IV.1.75)

for vector fields (αβ are space-time indices).

We now proceed to write down the current associated with the trans-

formation (IV.1.73), which we can write as

δ0 = (1/2)ϵµν [Σ
µν + (xµ∂ν − xν∂µ)]ϕ. (IV.1.76)

We note this indicates that

δϕ = (1/2)ϵµνΣ
µνϕ. (IV.1.77)

51σµν = (i/2)[γµ, γν ].
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Using equation (IV.1.52), we find (extracting the infinitesimal param-

eter, as is customary) the canonical angular momentum current

Mµαβ
c = ΠµΣαβϕ+Πµ(xα∂β − xβ∂α)ϕ+ (xαgβµ − xβgαµ)L,

which can be written more simply m terms of the canonical energy mo-

mentum tensor as

Mµαβ
c = ΠµΣαβϕ+ xαθµβc − xβθµαc . (IV.1.78)

This last result represents a fact common to all space-time symme-

tries; that is, we can write all currents associated with space-time sym-

metries in terms of the canonical energy momentum tensor. We can see

this as follows. We can generally write equation (IV.1.52) as

jµ = Πµδϕ− Πµδxν∂
νϕ+ Lδxµ,

where we have used equation (IV.1.38),and so

jµ = Πµδϕ− δxν(Πµ∂νϕ− gµνL)

= Πµδϕ− δxνθµνc . (IV.1.79)

The current (IV.1.78) is conserved when condition (IV.1.51) holds:
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ϵµνΣ
µνL = −L∂α(ϵαβxβ) = 0. (IV.1.80)

which means that L must be invariant under the variations δϕx (or under

the action of Σµν ;) i.e., it must be a Lorentz scalar.

The charges associated with the current (IV.1.78) are

Mαβ =

ˆ
d3xM0αβ

c =

ˆ
d3x(Π0Σαβϕ+ xαθ0βc − xβθ0αc ). (IV.1.81)

Of course, they obey

(1/2)ϵαβ[M
αβ, ϕ] = (1/2)ϵαβ[Σ

αβ + xα∂β − xβ∂α]ϕ (IV.1.82)

and obey the algebra given by equation (IV.1.68). We can also construct

the Lie bracket of these generators with the translation generators

[Mµν , Pρ] = −gµρPν + gνρPµ. (IV.1.83)

Equations (IV.1.62), (IV.1.68), and (IV.1.83) define the Lie algebra of

the ten parameter Poincaré group.
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We consider another group of space-time transformations—the dila-

tions.52 These transformations are defined by

δxµ = ϵxµ. (IV.1.84)

This can be written as

δxµ = ϵxν∂νx
µ. (IV.1.85)

The most general representation of the dilation generator, however, can

be written as

D = (d− xµ∂µ), (IV.1.86)

where d is a constant matrix called the scale dimension matrix, so that

δ0ϕ = ϵ(d− xµ∂µ)ϕ (IV.1.87)

and

δϕ = ϵdϕ. (IV.1.88)
52The term dilatation is more often used. We feel dilation is the more natural noun.
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Equation (IV.1.88) can be seen to be a simple generalization of equation

(IV.1.84). Equations (IV.1.84) and (IV.1.88) are similar to a “rescaling”

of variables (and in fact dilations are often referred to as scale transfor-

mations.) Since a dilation is a space-time transformation, however, it

differs essentially from a simple rescaling. Since only functions of xµ are

affected by a dilation, terms in the Lagrangian containing dimensionful

constant parameters will transform differently.

A consistent definition of the matrix d, therefore, is that it multiplies

the fields by their physical dimensions (for ℏ = c = 1, in units of inverse

length.) These dimensions are assigned to the fields so that their dy-

namical term in the Lagrangian is such that the Action is dimensionless.

The form of this term, as we will see, is fixed by the demands of Poincaré

symmetry and the other restrictions on the Action that we stated earlier.

The Lie algebra is, of course, trivial:

[D,D] = 0 (IV.1.89)

Since Poincaré symmetry will be assumed in constructing field theories,

the eleven parameter Lie group consisting of the Poincaré and dilation

transformations is of more significance. It is defined by the algebra given

by equations (IV.1.62), (IV.1.68), (IV.1.83), (IV.1.89) and by

[D,Pµ] = Pµ (IV.1.90)

[D,Mµν ] = 0 (IV.1.91)

and is called the Weyl group.
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Using the expression (IV.1.79) to construct the canonical dilation

current we find

Dµ
c = Πµdϕ− xµθµνc . (IV.1.92)

The condition (IV.1.51) for this current to be conserved becomes

ϵdL = −L∂µ(ϵxµ),

or

dL = −4L. (IV.1.93)

This states that the Lagrangian must have a scale dimension of 4,

which is its physical dimension. For a Lagrangian to be dilation sym-

metric, then, it must contain only terms which contain no dimensionful

constants (i.e., only terms whose scale dimensions is equal to their phys-

ical dimension.)

The dilation charge is

D =

ˆ
d3xD0

c =

ˆ
d3x(Π0dϕ− x0θ0νc ). (IV.1.94)

It obeys
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ϵ[D,ϕ] = ϵ(d− xµ∂µ)ϕ. (IV.1.95)

The last space-time transformations we consider are the conformal

(angle preserving) transformations:

δxµ = ϵν(2x
µxν − gµνx2). (IV.1.96)

Once again we can rewrite these as

δxµ = ϵβ(2x
αxβ − gαβx2)∂αxµ. (IV.1.97)

To understand how the fields transform, we rewrite equation (IV.1.96)

in a more suggestive form:

δxµ = ϵα(x
µxα + xµxα − gµαxβxβ)

= ϵαxβ[g
µβ(xα)− (xβgµα − xαgµβ)]. (IV.1.98)

The terms in parenthesis are just the infinitesimal dilation and Lorentz

transformations, respectively, sans their infinitesimal parameters. Sub-

stituting for their field representations we find

δϕ = 2ϵαxβ[g
βαd− Σβα]ϕ (IV.1.99)
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so the we have

δϕ = ϵα[2xβ(g
βαd− Σβα)− (2xβxα − gβαx2)∂β]ϕ, (IV.1.100)

and the most general representation of the conformal generator

Kα = 2xβ(g
βαd− Σβα)− (2xβxα − gβαx2)∂β. (IV.1.101)

It obeys the following Lie brackets:

[Kα, Kβ] = 0 (IV.1.102)

[D,Kα] = −Kα (IV.1.103)

[Mαβ, Kγ] = gαγKβ − gβγKα (IV.1.104)

[Pα, Kβ] = −gαβD + 2Mαβ. (IV.1.105)

These equations together with equations (IV.1.62), (IV.1.68), (IV.1.83),

(IV.1.89), (IV.1.90), and (IV.1.91) define the algebra of the fifteen param-

eter Lie group called the conformal group. As we can see from equation

(IV.1.105), there is no closed Lie group containing only the Poincaré

and the conformal transformations. Interestingly, the conformal trans-

formations can be obtained by applying the space-time inversion to the

translations, whereas no new transformations are obtained by applying

the inversion to the Lorentz or dilation transformations. So the confor-

mal group is the smallest group of space-time transformations containing

the Poincare group and the inversion.
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To construct the canonical conformal current, we use equation (IV.1.79).

We find

Kαµ
c = 2xβπ

µ(gβαd− Σβα)ϕ− (2xαxβx
2)θµβc . (IV.1.106)

The condition for this current to be conserved is, from equation (IV.1.51),

2xβ[g
βαd− Σβα)L = −L∂µ(2xµxα − gµαx2),

or

2xαdL− 2xβΣ
βαL = −8Lxα. (IV.1.107)

This equation is satisfied if the Lagrangian is both dilation and Lorentz

symmetric, as represented by equation (IV.1.93) and (IV.1.80), respec-

tively. So all Poincaré and dilation symmetric field theories are conformally

symmetric.53

Correction: So all
conformally
symmetric field
theories are
Poincaré and
dilation symmetric.

The charge associated with the conformal current is

Kα =

ˆ
d3xKα0

c =

ˆ
d3x[2xβΠ

0(gβαd−Σβα)ϕ− (2xαxβ− gαβx2)θ0βc ].

(IV.1.108)
53An additional condition is often found for field theories to be conformal symmet-

ric. See, for instance, Jackiw (1972), pp. 209–10. This condition, which also adds a
superfluous term to the conformal current, apparently arises from a confusion of the
role of coordinate variations in Noether’s theorem.
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We also have

ϵα[K
α, ϕ] = ϵα[2xβ(g

βαd− Σβα)− (2xβxα − gβαx2)∂β]ϕ. (IV.1.109)

Finally we consider internal field symmetries. We can write these

transformations generally as

δ0 = −iϵaLaϕ, (IV.1.110)

where once again the ϵa are all real infinitesimal parameters and the La

are our matrix representations of the Lie group generators. These obey

some Lie algebra

[La, Lb] = iCabcLc. (IV.1.111)

We already stated the general result for the current, equation (IV.1.50),

which we can write now as

Jµ
a = iΠµLaϕ. (IV.1.112)

These currents are conserved when equation (IV.1.49) holds:

LaL = 0, (IV.1.113)
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which states that the Lagrangian must be invariant under the action of

the generators.

Action Constructs and their Symmetries

We are now ready to write down the most general Lagrange densities

subject to Poincaré invariance and the other restrictions we stated at the

beginning of this section. For a single scalar field, we can write

L = (1/2)∂µϕ(x)∂
µϕ(x)− V (ϕ(x)), (IV.1.114)

where the 1/2 is put in by convention and V is a scalar function of ϕ(x).

The physical interpretation of this and other Lagrangians we shall write

down comes when they are used to find the canonical equations of motion

or in the path integral treatment.

The first term, the “kinetic term,” in equation (IV.1.114), is invariant

under the full conformal group. Terms appearing in V, the “potential

term”, containing dimensionful parameters will, however, ruin dilation

and conformal invariance. The kinetic term also tells us that the scalar

field has a dimension (physical and scale) of L−1.

The kinetic term is also invariant under a field shift

ϕ→ ϕ+ a, (IV.1.115)

—whereas the potential term is not—and under the transformation
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ϕ→ −ϕ, (IV.1.116)

under which the potential term may or may not be invariant. In particu-

lar if V (ϕ) = V (ϕ2), the Lagrangian will posses the symmetry (IV.1.116).

If a system consists of more than one scalar field, then other symme-

tries may exist. For instance, the kinetic term for N real scalar fields,

(1/2)
N∑
a=1

∂µϕa∂
µϕa (IV.1.117)

is invariant under a rotation of the fields into one another,

δϕa = ϵabϕb, (IV.1.118)

where ϵab is, naturally, an antisymmetric infinitesimal parameter. If

V (ϕ) = V (ϕaϕa), this theory possesses the internal symmetry (IV.1.118).

In this case there are (N2 −N)/2 conserved currents

Jµ
ab = ϕa∂

µϕb − ϕb∂
µϕa. (IV.1.119)

In particular, if we have the Lagrangian

L = (1/2)∂µϕ1∂
µϕ1 + (1/2)∂µϕ2∂

µϕ2 − V (ϕ1ϕ1 + ϕ2ϕ2) (IV.1.120)
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and we define

ϕ ≡ (ϕ1 + iϕ2)/
√
2, (IV.1.121)

then we have

L = ∂µϕ
∗∂µϕ− V (ϕ∗ϕ). (IV.1.122)

This Lagrangian is invariant under the infinitesimal “phase” transforma-

tion

δϕ = −iϵqϕ, (IV.1.123)

—where q is the generator of this transformation (in this case just a

number)—and has associated the conserved current

Jµ = iq(ϕ∗∂µϕ− ϕ∂µϕ∗) ≡ iqϕ∗←→∂µϕ. (IV.1.124)

For spin-1/2 fields the kinetic term is

(1/2)ψ̄iγµ
←→
∂µψ = (1/2)ψ†

Lσ
µ←→∂µψL + (1/2)ψ†

Rσ̄
µ←→∂µψR, (IV.1.125)

where ψ and ψ are four component complex objects called Dirac spinors

and ψ ≡ ψ†γ0; they are constructed from ψL and ψR, two component
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objects called left and right Weyl spinors respectively which are the actual

Lorentz group representations, such that

ψ ≡
(
ψL

ψR

)
(IV.1.126)

so that parity is well defined for ψ:

P : ψ → ψP =

(
ψR

ψL

)
≡ γ0ψ. (IV.1.127)

We see from the terms (IV.1.125) that spinor fields have dimension

-3/2. These spinor fields are, classically, Grassman (anti-commuting)

functions.54

The kinetic term, under a constant field shift, gains a total divergence

so that the Action is invariant under this transformation if there is no

potential term. It is also invariant under conformal transformations. The

two terms for ψL and ψR also separately posses these two invariances.

The Dirac kinetic term is invariant under two different “phase” trans-

formations:

δψ = −iϵqψ (IV.1.128)

and
54The terms (IV.1.125) can also be written without the factor of 1/2 and with the

derivative operator only acting to the right. The difference between these two forms
is just a total divergence.
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δψ = −iϵpγ5ψ. (IV.1.129)

The second transformation is called a chiral transformation. (These two

transformations reshuffle into two ordinary phase transformations on the

two Weyl terms.) The two currents associated with the above transfor-

mations are

Jµ = qψ̄γµψ = iqψ†
Lσ

µψL + iqψ†
Rσ̄

µψµ
R (IV.1.130)

and

Jµ
5 = pψ̄γµγ5ψ = ipψ†

Lσ
µψL + ipψ†

Rσ̄
µψµ

R. (IV.1.131)

We do not discuss spin-1 fields here as they will naturally evolve from

our discussions in the next section.

IV.2 Gauge Invariance

The Abelian Case

In this section we investigate in more detail those internal symmetries

which we found to be possessed naturally by the kinetic terms of scalar

and spinor fields, whose form was dictated by the physical assumptions

we made at the beginning of the preceding section. These phase sym-

metries fall into a larger class of “global gauge symmetries” which apply

to multiplets of an arbitrary number of fields. Global gauge symmetries
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form a subset of the set of internal symmetries found in Nature. What

distinguishes these symmetries is that when one allows the infinitesimal

parameters which characterize them to depend on x, they are still found

to represent symmetries in Nature. These symmetries then become “local

gauge symmetries” and are said thereby to be “gauged.” They are local

because, by allowing the characterizing parameter to be a function of x,

different variations of the fields may take place at different space-time lo-

cations under the imposition of a given symmetry transformation. From

a constructive viewpoint the motivation for investigating such symme-

tries is clear. Imposition of (global) space-time symmetries allowed us

to construct a restricted number of dynamical functions of the space-

time coordinates, namely the kinetic terms for the fields. A symmetry

which involves transformations which are prescribed by their location in

space-time will add an additional order to our dynamics; namely, the

imposition of forces or interactions. Making the symmetry parameter

x-dependent also adds another dynamical function to the theory.

General relativity was the first theory to realize a symmetry made

local. Einstein made Lorentz symmetry a local symmetry. For general

relativity the added dynamical function is the gravitational field, which

defines the connection between symmetry transformations made at dif-

ferent space-time points.

Soon after the success of general relativity, Herman Weyl attempted

to apply this same technique to the phenomenon of electromagnetism.55

He chose another space-time symmetry, dilation symmetry, to make into

a local symmetry (hence, the Weyl group.) The electromagnetic field

would then define the connection between dilations made at different

space-time points. Weyl introduced the term gauge theory because of
55See, for instance, Quigg (1983), pp. 37–8, or Moriyasu (1982), for a discussion.
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the gauge blocks which were used as reference lengths. Let us consider

how this might work.

Let ϕ be a scalar or spinor field. Under an ordinary infinitesimal

dilation its transformation is given by equation (IV.1.87). ∂µϕ transforms

like

δϕ[∂µϕ] = ∂µδ0ϕ = ϵ(dϕ − 1− xν∂ν)∂µϕ = ϵD∂µϕ, (IV.2.1)

where dϕ is the dimension of ϕ and D is given by equation (IV.1.86). This

result can be seen either by calculating ∂µδ0ϕ directly, or by noting that

δ0 and ∂µ commute and ∂µϕ transforms like ϕ, except it has a dimension

of one inverse length extra.

If our infinitesimal parameter is now allowed to depend on x, the

transformation of ϕ has the same form; i.e.,

δ0ϕ = ϵ(x)(d− xν∂ν)ϕ, (IV.2.2)

but this is not so for ∂µϕ, since δ0 no longer commutes with ∂µ. Instead

we find

δϕ[∂µϕ] = ∂µδ0ϕ

= δ0∂µϕ+ (∂µϵ(x))(d− xν∂ν)ϕ

= ϵ(x)D[∂µ + ∂µ ln ϵ(x)]ϕ

≃ ϵ(x)D[∂µ + ∂µϵ(x)]ϕ, (IV.2.3)
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where in the last line we made a first order approximation. The extra

term we get because of the x-dependence of ϵ we have been able to put

in a suggestive form in equation (IV.2.3). It suggests that, if we redefine

∂µϕ to

Dµϕ ≡ (∂µ + eAµ)ϕ, (IV.2.4)

(where e is a constant of proportionality between Aµ and ϕ) and require

Aµ to transform simultaneously under the infinitesimal transformation

in such a way that it cancels the extra term in equation (IV.2.3),

δAµ = (−1/e)∂µϵ(x), (IV.2.5)

then this new derivative, the “covariant derivative,” will transform as ∂µϕ

in equation (IV.2.1),

δϕ[Dµϕ] = ϵ(x)DDµϕ. (IV.2.6)

So, if L(ϕ, ∂µϕ) is globally dilation invariant, L(ϕ,Dµϕ) will be locally di-

lation invariant. Weyl interpreted this needed function Aµ as the electro-

magnetic potential, which in fact possesses the freedom given by equation

(IV.2.5).

Unfortunately, dilation invariance is not realized in Nature. At the

quantum level, a particle of definite mass has associated a de-Broglie

wavelength which sets a preferred scale. In field theory, since finite mass
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terms contain dimensionful parameters, dilation invariance requires ei-

ther that all particles be massless or that the mass spectrum be contin-

uous. This is, of course, not observed. We will have more to say on this

subject later.

Phase transformations turn out to follow an analysis identical to the

one we described above for dilations. This “coincidence” is due to the fact

that both transformations are parametrized by a scalar parameter. It is

the scalarity of the characterizing parameter that allows the identification

appearing in equation (IV.2.5), and it is that transformation law which

is the key to introducing the vector field Aµ. (Recall, none of the other

fundamental space-time symmetries we discussed depend upon a scalar

parameter.)

Let us reproduce the above results for a phase transformation, except

that we consider, as is often done, a finite phase transformation.56 We

can write

U = e−iqω (IV.2.7)

for our finite global phase transformation, where we use ω to represent

our parameter, a real number. The transformation (IV.2.7) is, of course,

an element of a Lie group. It is called U(1) because its algebra contains

one generator and its representations are unitary. So

ϕ(x)→ Uϕ(x) (IV.2.8a)

∂µϕ(x)→ U∂µϕ(x). (IV.2.8b)

56See, for instance, Huang (1982), Ch. 3, or Quigg (1983), Ch. 3.
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A local phase transformation

U(x) = e−iqω(x) (IV.2.9)

gives

ϕ(x)→ U(x)ϕ(x) (IV.2.10)

∂µϕ(x)→ U(x)[∂µ − iq∂µω(x)]ϕ(x). (IV.2.11)

Once again, if we let

Dµ ≡ ∂µ + iqAµ (IV.2.12)

and

Aµ → Aµ + ∂µω(x) (IV.2.13)

we find

Dµϕ(x)→ U(x)Dµϕ(x). (IV.2.14)

L(ϕ,Dµϕ) will be locally gauge invariant if L(ϕ, ∂µϕ) is globally gauge

invariant. Global gauge invariance is a symmetry found in Nature, so

these are meaningful results.
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In order for L(ϕ,Dµϕ) to be a closed dynamical system, it must con-

tain a dynamical term for Aµ; that is, a term containing ∂µAν quadrati-

cally. This term, of course, must also be a Lorentz scalar and must not

spoil the new found symmetry which motivated its introduction: local

gauge invariance.

The covariant derivative was constructed to be gauge covariant. Con-

sider the following commutator:

(1/iq)[Dµ, Dν ] = (∂µAν − ∂νAµ) + iq[Aµ, Aν ]

= ∂µAν − ∂νAµ

≡ Fµν , (IV.2.15)

since Aν commutes with itself. Fµν is called the field strength tensor, and

by construction is gauge-invariant. We can then form the Lorentz scalar

Lγ ≡ −(1/4)FµνF
µν , (IV.2.16)

where the -1/4 is by convention. There is, in fact, no other term not

proportional to this one that meets our requirements.

Consider now a system containing one complex scalar field and a

spinor field, such that

L = (Dµϕ)
∗Dµϕ+ψ̄iγµDµψ−m2ϕ∗ϕ−Mψ̄ψ−(1/4)FµνF

µν . (IV.2.17)
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This system is locally gauge invariant under the following simultaneous

transformations:

ϕ→ e−iqω(x)ϕ

ψ → e−iqω(x)ψ

Aµ → Aµ + ∂µω(x) (IV.2.18)

and physically represents a scalar and a spinor field interacting with an

electromagnetic field. We can exhibit the interaction more explicitly by

writing out the kinetic terms:

(Dµϕ)
∗Dµϕ = (∂µ − iqAµ)ϕ

∗(∂µ + iqAµ)ϕ

= ∂µϕ
∗∂µϕ+ q2AµA

µϕ∗ϕ− iqϕ∗←→∂µϕAµ

= ∂µϕ
∗∂µϕ− iq(ϕ∗←→Dµϕ)A

µ − q2AµA
µϕ∗ϕ

= ∂µϕ
∗∂µϕ− JµAµ − q2A2ϕ2 (IV.2.19)

ψ̄γµDµψ = ψ̄iγµ(∂µ + iqAµ)ψ

= ψ̄iγµ∂µψ − qAµψ̄γ
µψ

= ψ̄iγµ∂µψ − JµAµ. (IV.2.20)

In equations (IV.2.19) and (IV.2.20) the Jµ are the conserved currents

associated with local gauge invariance:

JSCALAR
µ = iq(ϕ∗←→Dµϕ) = iqϕ∗←→∂µϕ− 2q2ϕ∗ϕAµ (IV.2.21)

JSPINOR
µ = qψ̄γµψ. (IV.2.22)
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The scalar current gains an extra term because its canonical momentum

changes,

Πµ → Πµ − iqAµϕ∗, (IV.2.23)

whereas the spinor Πµ does not change.

Applying Hamilton’s principle to the Lagrangian (IV.2.17) alternately

for each of the canonical fields, we will obtain an equation of motion for

a massive scalar field with mass m (Klein-Gordon equation), an equation

of motion for a massive spinor field with mass M (Dirac’s equation), and

Maxwell’s equations with the currents Jµ as the sources. Adding a term of

the form m2
γA

2 to the Lagrangian (IV.2.17) which would yield a massive

electrodynamics would spoil gauge invariance; hence, the masslessness of

the photon is required by gauge invariance.

The Non-Abelian Case

We now consider the general gauge theory for multiplets of fields.57 These

results will be mostly a generalization of the preceding discussion except

that complications arise from the fact that the elements of non-trivial

Lie algebras do not commute, and since the gauge fields will be elements

of the Lie algebra, they will not commute. These gauge fields are con-

sequently referred to as non-abelian gauge fields. Alternatively, they are

called Yang-Mills fields, Yang and Mills (1954) being the first to consider

such theories.

In the last section we already indicated how a theory generalized

for a set of similar fields gives rise to new symmetries. In fact, phase
57See, for example, Huang (1982), Ch. 4, or Quigg (1983), Ch. 4.
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symmetry, or U(1) gauge symmetry, for scalar fields resulted from the

simplest such generalization, and spinor fields are by construction mul-

ticomponent objects. Consequently, we construct multiplets containing

similar fields (i.e., either scalar or spinor fields) in such a way that they

transform among themselves under an irreducible representation of a Lie

group. We wrote down the general infinitesimal transformation for such

a group at the end of the last section. We can write the general finite

transformation (element of the Lie group) as

U = e−iωaLa = e−iω (IV.2.24)

with

ω = ωaLa, (IV.2.25)

which is also a generalization of equation (IV.2.7). For the representa-

tions, in addition to being unitary, we require that det U = 1 (which

removes the complex phases) so that the representatives of the La, are

traceless. Unitarity also insures that these representatives are Hermi-

tian. These groups are called SU (N), where N is the dimension of the

smallest nontrivial irreducible representation (the fundamental represen-

tation) and (N2 − 1) is the dimension of the Lie algebra (the number

of generators). (S, for “special,” indicates that the condition detU = 1

holds.)

Practically, we can represent these multiplets as column vectors; such

as
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ϕ =



ϕ1

�

�

�

ϕn


(IV.2.26)

so that the fields ϕi can be considered components of these vectors which

are rotated into one another by the n-dimensional unitary representation

matrices. We represent a collection of these multiplets by Ψ. Then if

L(Ψ, ∂µΨ) = L(UΨ, ∂µUΨ), this Lagrangian is globally gauge invariant.

Similarly under a local gauge transformation

Ψ→ U(x)Ψ(x) (IV.2.27a)

∂µΨ→ U(x)∂µΨ(x) + [∂µU(x)]Ψ(x), (IV.2.27b)

or, in terms of an infinitesimal transformation,

δΨ(x) = −iω(x)Ψ(x) (IV.2.28)

δΨ[∂µΨ(x)] = −iω(x)∂µΨ(x)− i[∂µω(x)]Ψ(x). (IV.2.29)

Again, we would like ∂µΨ to transform like Ψ, which means cancelling

the second term on the right side in equation (IV.2.29). To this end we

introduce the covariant derivative
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DµΨ(x) ≡ [∂µ + igAµ(x)]Ψ(x). (IV.2.30)

We define

Aµ(x) ≡ Aµ
a(x)La (IV.2.31)

as an element of the Lie algebra since ω(x) is such an element. Conse-

quently, there will be N gauge fields, Aµ
a . We desire the transformation

property of Aµ
a(x) to lead to the cancellation of the unwanted term in

equation (IV.2.29). Since

DµΨ→ [∂µ + ig(Aµ + δAµ)](Ψ + δΨ), (IV.2.32)

the infinitesimal change in DµΨ (to first order) is

δΨ(D
µΨ) = iωDµΨ+ ig{δAµ − (1/g)∂µω + i[ω,Aµ]}Ψ. (IV.2.33)

DµΨ transforms as desired if the last term above vanishes; i.e.,

δAµ
a(x) = (1/g)∂µω(x)− i[ω(x), Aµ(x)], (IV.2.34)

which is the desired transformation law for Aµ. This can also be written

in terms of the individual gauge fields as
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δAµ
a(x) = (1/g)∂µωa(x) + Cabcω(x)A

µ
c (x), (IV.2.35)

where the Cabc are the Lie algebra structure constants defined in the last

section and are completely antisymmetric.

To find the kinetic term for the Aµ
a , we once again consider

(1/ig)[Dµ, Dν ] = ∂µAν − ∂νAµ + ig[Aµ, Aν ] (IV.2.36)

≡ Fµν ,

where the commutator does not vanish this time. If we define F µν
a by

F µν ≡ F µν
a La, (IV.2.37)

then it can be shown that

F µν
a = ∂µAν

a − ∂νAµ
a − gCabcA

µ
bA

ν
c (IV.2.38)

which is our field tensor. This, of course, is not gauge invariant, but is

gauge-covariant; however,

Lγ = −(1/4)F µν
a Faµν (IV.2.39)

is gauge-invariant as well as Lorentz invariant.
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Our scalar and spinor matter current, which couples to Aµ
a is now

Jν
a = −ig[(Dνϕ)∗Laϕ− ϕ∗La(D

νϕ)] + (ψ̄γνLaψ)

= −ig(ϕ∗←→∂νLaϕ)− g2Aν
bϕ

∗{La, Lb}ϕ+ (ψ̄γνLaψ). (IV.2.40)

where {,} is an anticommutator.

The constant g, above, is called the gauge coupling constant. It was

included to account for a difference of scale between the gauge fields and

the matter fields. In quantum theory it determines the relative strength

of the minimal coupling. If the gauge group is simple (cannot be written

as a product of two or more Lie sub-groups), then the coupling constant

can be absorbed into a redefinition of the gauge fields. If it is not simple,

then there will be a different g for each independent Lie algebra and such

a redefinition is not possible. The g’s are the only arbitrary parameters

of the theory.

From a constructive viewpoint global gauge invariance, while not

forced upon us as a necessary symmetry, was at least strongly motivated

by our requirements of Poincaré invariance and other physical require-

ments mainly concerned with causality; however, at first sight, there

seems to be little such motivation for making this global symmetry into

a local one. We note, however, that local gauge invariance is not a new

symmetry, and in fact no new currents are introduced when a symmetry

is gauged. So gauging a symmetry is not akin to imposing a new one.

Rather, we hinted at the motivation for gauging a symmetry earlier—by

gauging global gauge invariance, which is naturally a symmetry of the

kinetic terms, we add a second order to our dynamics. We were moti-

vated to consider terms with ∂µ operators in order to give a dynamical
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aspect to our fields, not by any motivation from first principles, and we

were restricted to two ∂µ operators in a term by considerations of causal-

ity. Taking a symmetry which is closely connected to considerations of

Poincaré invariance and of causality and generalizing it to obtain inter-

actions of forces is a logical path to remain true to these considerations.

Once a gauge invariance is connected with a symmetry actually found

in Nature (as was done when the connection Aµ(x) was identified as the

electromagnetic potential,) a “conflict” with gauge invariance would im-

ply a conflict with those basic principles which motivated it. In fact,

gauge invariance is essential to proving the renormalizability of a quan-

tum field theory.

Such conflicts are called gauge symmetry breaking. One possible way

to break a gauge symmetry was provided by the example of a mass term

for Aµ. Such a symmetry breaking is an explicit symmetry breaking.

This sort of term straight-forwardly violates the gauge symmetry and

eliminates it as a true symmetry of the system and of the equations of

motion; although, if this sort of term is small, one might still have an

approximate symmetry. Of more interest is a mechanism which breaks

the symmetry of the system, but allows gauge symmetry to remain a

symmetry of the solutions to the equations of motion. Such a mechanism

would maintain gauge symmetry as a symmetry of Nature, but not as a

physical symmetry—a situation we should be most interested in. Such

a mechanism does in fact exist and it plays an important role in present

day field theory. It is known as “spontaneous symmetry breaking.” We

shall be discussing this phenomenon in the next section.
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IV.3 Spontaneous Symmetry Breaking

The Global Abelian Case

We now discuss the important phenomenon of spontaneous symmetry

breaking. As before, our discussion will be in terms of classical fields,

though we will often use quantum field theoretical terms in this discus-

sion. The justification, in this case, rests on the fact that the classical

structure so presented is equivalent to a quantum treatment in the tree

approximation (no closed loops in Feynman graphs.)58

We start off with a general and qualitative description of this phe-

nomenon. Spontaneous symmetry breaking is not a phenomenon limited

to field theory and is in fact a common occurrence in Nature. It usually

occurs when two or more symmetrical “forces” come into competition due

to a change in some external parameter (such as temperature), and the

system is forced to choose a relatively asymmetrical final state. This final

state then does not exhibit the symmetry of the theory. For this reason

the symmetry is sometimes said at this point to be hidden.59

As an idealized example, consider a three dimensional infinite ferro-

magnet (Heisenberg ferromagnet). At high temperatures the rotational

invariance of the coulomb interaction is manifest, as the atomic spins are

randomized. As it is cooled below the Curie point, however, the ferromag-

net reaches its ground state in which all the spins are aligned. The direc-

tion of alignment is arbitrary until the direction is chosen spontaneously.

The symmetry of the theory is now expressed by the fact that this ground

state is infinitely degenerate. An arbitrary, non-implementable, rota-
58See Coleman (1973). This is true for gauge theories, but may break down for

non-gauged field theories. See Frampton (1987), pp. 47–75, for a discussion of this
point.

59See, for example, O’Raifeartaigh (1979) for a discussion along these lines.
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tion of all spins would take the ferromagnet into an equivalent ground

state. The infinite extent of the ferromagnet makes such a rotation of

spins impossible. A person living in a universe containing such a ferro-

magnet would see a constant magnetic field in a certain direction and

would not be aware of rotational invariance as an exact symmetry of the

laws of Nature. If his measuring device interacted only weakly with this

field he might suspect rotational symmetry is an approximate symmetry;

however, if he knew the truth—that is, that the field is a permanent

all-pervading feature of his universe—then he would properly label rota-

tional symmetry as a broken symmetry of Nature.60As one final note, if

we had considered a one-dimensional infinite ferromagnet instead, then

the symmetry spontaneously broken would be a discrete one.

If, in quantum field theory there existed a field whose vacuum state

was not invariant under certain transformations of the Hamiltonian of the

theory, then this symmetry would be spontaneously broken and would

not be manifest to us. Once again this vacuum state would be degenerate,

but these vacua could not overlap, being states of an (infinite) quantum

field theory; that is, they must lie in distinct Hilbert spaces.

These vacua, in order to be degenerate, must be non-empty. This

immediately tells us that this field must be a scalar field; otherwise, the

vacuum would have spin and Lorentz symmetry would be spontaneously

broken, contrary to observation.

We consider first, then, the simplest such field, a single scalar field.61

Let its potential term be
60So a broken symmetry results from global conditions. An approximate symmetry

could, generally, be realized as a perfect symmetry under appropriate local conditions.
61See Huang (1982), Chs. 3 and 4, Quigg (1983), Ch. 5, and Coleman (1973) for

the following discussion of spontaneous symmetry breaking in quantum field theories.
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V (ϕ) = (µ2/2)ϕ2 + (λ/4!)ϕ4, (IV.3.1)

which yields a renormalizable field theory, and can be described as a

self-interacting massive scalar field. λ must be positive, otherwise the

Hamiltonian has no lower bound; µ2 can be positive or negative and,

hence, is not strictly identifiable as a mass term. The classical Hamilto-

nian is

H =

ˆ
d3x[(1/2)(∂0ϕ)

2 + (1/2)(∇ϕ)2 + V (ϕ2)]. (IV.3.2)

It can be seen that a solution to the equations of motion which is a

minimum of H is a constant ϕ(x) = ϕ0, and is a minimum of V (ϕ0). We

recall that this theory is invariant under the discrete symmetry

ϕ→ −ϕ. (IV.3.3)

If µ2 is positive, the minimum of V is given by ϕ0 = 0 and this symmetry

is manifest in the vacuum state; that is, it is invariant under the variation

(IV.3.3). If µ2 is negative, we find that the minima of the potential are

ϕ0 = ±(−6µ2/λ)
1/2, (IV.3.4)

so that there are two vacua (analogous to the one-dimensional ferromag-

net.) One of these two solutions must be chosen by the system in its
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vacuum state. Let us assume it is the positive solution. To study the

low-lying states of this system, it is then appropriate to expand about

this solution. To this end we define the “shifted” field

θ(x) = ϕ(x)− a, (IV.3.5)

where

a = (−6µ2/λ)
1/2. (IV.3.6)

We can write the potential in terms of this field as

V (θ) = (λa2/6)θ2 + (λa/12)θ3 + (λ/4!)θ4. (IV.3.7)

We still have a massive scalar field, now with mass = (λa2/4!)1/2. Be-

cause of the θ3 term, the symmetry is no longer manifest; although,

equation (IV.3.7) is still invariant under the transformation

θ → −θ − 2a. (IV.3.8)

This transformation is, as stressed above, not implementable.

Consider next a complex scalar field with the potential function

V (ϕ∗ϕ) = µ2ϕ∗ϕ+ λ(ϕ∗ϕ)2. (IV.3.9)
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This theory possesses a global gauge invariance. Once again, if µ2 > 0,

there will be a symmetric vacuum state at ϕ0 = 0. If µ2 < 0, however,

we have spontaneous symmetry breaking with

ρ = (−µ2/2λ)
1/2eiα0 ≡ ϕ0e

iα0/
√
2 (IV.3.10)

as a vacuum solution, where a0, is an arbitrary real constant. There

are now (as in the case of the three-dimensional ferromagnet) an infinite

number of vacuum state solutions, which can be taken into one another

by a phase transformation. As we know, however, once a system has

spontaneously chosen a vacuum state, it knows nothing of the other dis-

tinct vacua (i.e., no transitions are possible between them.)

To determine the low-lying quantum states, we can again expand

about a vacuum state in terms of classical small oscillations. We replace

the complex fields by two real fields, such that

ϕ(x) = [ϕ0 + η(x)]eiα(x)/
√
2, (IV.3.11)

where η(x) and α(x) have vacuum expectation values of zero, and for

simplicity we have implicitly chosen the ground state such that α0 = 0.

This yields an expansion in terms of η(x) for the Lagrangian

L = 1/2{∂µη∂µη − λ(2ϕ0 − η)2η2 + (ϕ+ η)2∂µα∂µα} (IV.3.12)

or, to second order in the fields,
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L ≃ 1/2(∂µη∂µη − 4λϕ2
0η

2) + 1/2(ϕ2
0∂

µα∂µα). (IV.3.13)

Here we see exhibited a massive scalar field η(x), mass = 2ϕ0

√
λ, and a

massless scalar field, α(x).

In classical language, examining equation (IV.3.11), we see that α(x)

represents an angular mode of vibration, whereas η(x) represents a radial

vibration mode. The latter mode is opposed by the restoring force of the

potential, the other mode is not. In quantum field theory, such modes

translate into massive and massless particles respectively. Furthermore,

this strange spin-less massless particle, called a “Goldstone boson,” corre-

sponds to zero-energy excitations which connect the possible vacua, but

cannot, of course, cause transitions between them. The broken symmetry

is sometimes said to be manifested in this mode (called the “Goldstone

mode;”) this language is appropriate if it is understood that this mode

does not correspond to any canonical or unitary transformation on the

system, which would otherwise violate the vacuum constraint.

The appearance of the Goldstone boson has been formulated into a

theorem: for any local, manifestly Lorentz covariant field theory whose

energy-momentum eigenvalues form a complete set and have positive

definite norm, for every continuous62 global symmetry of the system that

is not a symmetry of the vacuum, there will occur in the theory a massless

scalar particle whose properties are the same as the broken symmetry

group generator. This is known as Goldstone’s theorem. Unfortunately,

no fundamental massless scalar particles are observed in Nature; so, in

order for spontaneous symmetry breaking to operate in quantum field
62Spontaneously broken discrete symmetries do not yield Goldstone bosons.
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theory, one or more of the assumptions that Goldstone’s theorem relies

on must be false. We shall see that, in fact, this happens for local gauge

theories.

The Local Abelian Case

For systems with local gauge invariance, Goldstone’s theorem breaks

down and is replaced by the Higgs mechanism. The failure of Goldstone’s

theorem is directly attributable to the existence of the gauge fields and

their associated gauge freedom. When quantizing gauge fields, the un-

physical degrees of freedom associated with the gauge freedom must be

eliminated by fixing the gauge. If one quantizes in a manifestly covari-

ant gauge (i.e., the Lorentz gauge,) however, the theory contains states

of negative norm (i.e., longitudinal photons;) whereas, if quantization is

done in a gauge where only states of positive norm appear (such as the

radiation gauge,) then manifest covariance is lost. Let us see how the

Higgs mechanism works in a theory with a local U(1) gauge symmetry.

We consider, then, the Lagrangian

L = (Dµϕ)∗(Dµϕ)− V (ϕ∗ϕ)− 1/4F µνFµν , (IV.3.14)

where

V (ϕ∗ϕ) = λ(ϕ∗ϕ− ρ20)2 (ρ0 ̸= 0), (IV.3.15)
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which yields a spontaneously broken gauge symmetry. We call a scalar

field such as this a Higgs field. The U(1) symmetry of equation (IV.3.14)

is manifested by the local gauge transformations

δAµ(x) = ∂µω(x) (IV.3.16)

and

δϕ(x) = −iqω(x)ϕ(x) (IV.3.17a)

δϕ∗(x) = iqω(x)ϕ∗(x). (IV.3.17b)

A lowest energy field solution for this system is

Aµ
0(x) = 0

ρ0(x) = ϕ0e
iα0/
√
2.

The gauge field is empty in the vacuum state, as it must be. To exam-

ine the quantum states around the vacuum, it is useful once again to

replace the complex scalar fields by a pair of real fields as in equation

(IV.3.11). We also choose the vacuum state as before. From equations

(IV.3.17a),(IV.3.17b) and (IV.3.11) we see that

δη = 0 (IV.3.18a)

δα = −qω(x) (IV.3.18b)
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under a local gauge transformation, so that

Dµη = ∂µη (IV.3.19a)

Dµα = ∂µα + qAµ. (IV.3.19b)

Let us substitute these covariant derivatives explicitly, directly into equa-

tion (IV.3.13). We obtain

L ≃ (1/2)(∂µη∂µη − 4λϕ2
0η

2) + (1/2)ϕ2
0∂

µα∂µα + ϕ2
0qA

µ∂µα

(IV.3.20)

+ (1/2)ϕ2
0q

2AµAµ − (1/4)F µνFµν .

The radial mode-scalar field η has not been affected. Interpretation of the

other two fields is difficult because of the quadratic cross term. We have

not finished, however, since as mentioned earlier, our gauge must be fixed

to eliminate the extra degree of freedom due to the gauge freedom of Aµ

(in fact, if we were to interpret the penultimate term in equation (IV.3.20)

as a mass term for Aµ, this system would posses five field degrees of

freedom, whereas the Lagrangian (IV.3.14) we began with contains only

four.)63 Examining equation (IV.3.11), we can see that we can always

choose a particular gauge such that α(x) is identically zero. Such a gauge

is
63Scalar fields represent one field degree of freedom, massless vector fields two, and

massive vector fields three.
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ϕ̃(x) = e−iα(x)ϕ(x) = [ϕ0 + η(x)]/
√
2 (IV.3.21a)

Ãµ(x) = Aµ(x) + ∂µα(x). (IV.3.21b)

In this gauge our Lagrangian for small fields becomes

L ≃ 1/2(∂µη∂µη−4λϕ2
0η

2)+1/2(ϕ2
0q

2ÃµÃµ)−(1/4)F µνFµν . (IV.3.22)

The particle spectrum now consists of a massive scalar field, mass =

2ϕ0

√
λ, and a massive vector gauge field, mass = ϕ0q. There is no α

field as we explicitly intended by this choice of gauge.

In classical language, α was the (Goldstone) mode which manifested

the symmetry broken by the degenerate ground state. By coupling this

gauge symmetry to the dynamical field Aµ, however, this mode can no

longer be permitted since this would require non-zero energy oscillations

in the field Aµ which is zero (empty) in the ground state. Instead, the

degree of freedom the Goldstone represented is now manifested in the

mass of the gauge boson.

We see that the Higgs mechanism is also a mechanism for produc-

ing massive gauge fields without explicitly adding a gauge symmetry

violating term. The appearance of the mass term in the Lagrangian

(IV.3.22) differs from an ad hoc insertion of a mass term because this

Higgs-generated term comes along with higher order interaction terms

(which are not included in equation (IV.3.22)) which together preserve a

non-implementable gauge invariance of the Lagrangian. This fact is most

important in the full quantum theory where renormalization requires
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gauge invariance. Symmetry of the Lagrangian under gauge transforma-

tions even of this non-implementable form is sufficient for the cancellation

of the ultraviolet divergences of the theory.

The gauge we chose above is called the physical gauge because only

physical fields appear in the Lagrangian. It is also called the unitary

gauge because only Feynman propagators for physical fields appear in

the S-matrix. In other gauges, such as the Lorentz gauge, the Goldstone

boson does not disappear, but remains as an unphysical constrained field.

As one expects, however, since physical quantities, such as scattering

amplitudes, are gauge-independent, the Goldstone boson must disappear

from these when calculated in any gauge. To understand how this can

happen in gauges other than the physical gauge, recall the Gupta-Bleuler

mechanism in quantum electrodynamics. There the time-like component

of the photon field, which by itself gives a non-unitary contribution to

the S-matrix, is exactly cancelled by the longitudinal component of the

photon field in on-shell calculations. The Higgs mechanism operates

instead to cancel the time-like component of the gauge field with the

Goldstone boson (thereby leaving the gauge field with three degrees of

freedom instead of two, as required.)64

The Non-Abelian Case

We now examine spontaneous symmetry breakdown of theories with gen-

eral gauge groups.65 We postulate a set of Higgs fields which we denote by

the vector ϕ. These fields are invariant under the global transformations

specified by the gauge groups, G, of the theory:
64Cf. O’Raifeartaigh (1979) for the argument.
65See Huang (1982) for this discussion.
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δϕ = −iωϕ = −iωaLaϕ. (IV.3.23)

The potential function of ϕ has a minimum, taken to be zero, at a non-

zero value ϕ = ρ; ρ is independent of x. The degeneracy of ρ is expressed

by transformations of it under the gauge group

δρ = −ωaLaρ. (IV.3.24)

As opposed to the U(1) case, however, not all ρ’s so obtained need be

independent; i.e., δρ may be zero for some ω. In other words, there may

be a subset of the elements of G—which will form a proper subgroup—

which leave the vacuum invariant. We call this subgroup, H, the “little

group.” Its Lie generators, la, are a subset of the generators of G:

[lα, lβ] = iCαβγlγ. (IV.3.25)

For these generators equation (IV.3.24) becomes

δρ = −iωαlαρ = 0, (IV.3.26)

which yields

lαρ = 0, (IV.3.27)
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since the ωα are arbitrary. We say that the little group generators “an-

nihilate the vacuum,” or that they are unbroken generators. H, then, is

a remaining symmetry group after spontaneous symmetry breaking—the

symmetry group G of the original full theory is broken down to H.

We can form distinct cosets of G with respect to H: H,U1H,U2H . . .

The members of UiH are of course not members of H; therefore, the

number of generators of this coset space66 G/H is equal to the number of

generators of G minus the number of generators of H, a number we will

label by K. G/H is not necessarily a group; in fact, it is only a group

if H is a normal subgroup (i.e., every right coset is a left coset.) We can

summarize by writing G = H ∪G/H = H ∪ (G−H).

The generators then fall into two sets. There are (N −K) unbroken

generators (N=number of generators of G) given by equation (IV.3.27).

There are also K broken generators:

Ljρ ̸= 0. (IV.3.28)

How the generators actually divide up between these two sets depends

on the choice of the vacuum state, but, of course, the number in each

set is independent of this choice. Since from Goldstone’s theorem there

must be a Goldstone boson for each broken generator, there must be K

Goldstone bosons in this theory. The number of Goldstone bosons in a

theory then depends strictly on group theoretic properties; namely, on

the dimensions of the Lie algebras of G and H.
66The elements of the coset space are, of course, not transformations but cosets;

however, there is a one-to-one correspondence between these cosets and the generators
of G not in the set lα. See, for instance, Herstein (1975), pp. 49-64.
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The dimension of the representational space, naturally, depends upon

what representation of the gauge group the Higgs field transforms under.

Let us take this to be R-dimensional. This means that ρ has R compo-

nents. Since equation (IV.3.28) represents K independent vectors, there

is a mapping of the K generators to a K-dimensional subspace of the

representation space. We call this the Goldstone space. The remaining

(R −K)-dimensional subspace we call the Higgs space. There are, cor-

respondingly, (R −K) non-Goldstone fields. Of course if this number is

zero, the little group is empty.

We straight-forwardly now generalize our approach for U(1) sponta-

neously broken symmetry. We choose our vacuum state such that the

Goldstone space is empty, and shift our non-Goldstone fields such that

the newly defined fields also have zero vacuum expectation values. By

next introducing the Yang-Mills fields, we institute the Higgs mechanism.

Our vacuum state is then given by

ρ =

0

ρ̃

 K − dimensional Goldstone space

(R−K)− dimensional Higgs space

(Aµ
a)0 = 0. (IV.3.29)

We then fix the gauge to be the physical gauge so that the Goldstone

space is identically empty. Low-lying state solutions are then given by
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ϕ̃(x) =

 0

ρ̃+ η(x)



Ãµ
a(x) small. (IV.3.30)

η(x) is an (R–K)-component field and is also small.

To demonstrate the particle spectrum we note that to second order

in these small fields

V (ϕ) =
ηnηm
2

[
∂2V

∂ηn∂ηm

]
ϕ=ρ

= (1/2)ηn

[
∂2V

∂ηn∂ηm

]
ϕ=ρ

ηm

≡ (1/2)(η, V ′′(ρ)η), (IV.3.31)

where we have defined the inner product (,); also

Jµ
a = −g2Aν

bϕ
† {La, Lb}ϕ

= −g2ρ† {La, Lb} ρAµ
b + interaction terms

from equation (IV.2.40), so that

Aa
µJ

µ
a = −g2Aa

µρ
† {La, Lb} ρAµ

b + interaction terms. (IV.3.32)
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These are the terms in the Lagrangian from which we obtain the mass

matrices:

(
µ2
)
nm
≡


0 | 0

−− − −−

0 | V ′′(ρ)


Goldstone space

Higgs space

(IV.3.33)

(
M2

)
ab
≡ (1/2)g2ρ† {La, Lb} ρ =


(M2)ij | 0

−− − −−

0 | 0


Goldstone space

Higgs space

The first matrix gives the masses in the Higgs sector: (R −K) massive

scalar particles. The second matrix gives the masses in the gauge boson

sector: K massive vector bosons and (N–K) massless vector bosons. If

we count the number of independent components these fields represent,

we find (2N + R)—the number before spontaneous symmetry breaking:

i.e., N massless vector gauge fields and R Higgs scalars.

The Weinberg-Salam Model

We now briefly present an example of a successful application of the ideas

so far presented in this section and the last. This is the Weinberg-Salam

model of the electroweak interactions.67 As we “construct” this theory,

we choose those characteristics that we are free to choose in conformance

with our low-energy knowledge of the particle spectrum and their inter-

actions. These characteristics are the multiplets our physical particles

are to appear in, the gauge group whose representations these particles

are to transform under, and the particular vacuum state structure that
67We follow, for the most part, Huang’s (1982), Ch. 6, treatment.
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the theory will contain. Of course, the first two of these characteristics

are related—the multiplet structure of the Lagrangian yields its internal

symmetries from which our gauged symmetries must be chosen, or given

the gauge structure of the theory, our fundamental particle multiplets

must transform under a representation of the gauge group (usually the

fundamental one.)

Weak interactions are known to violate parity conservation maxi-

mally: only left-handed particles carry weak charge. Particle states

with definite transformation properties under the action of the under-

lying gauge group must then be states of definite chirality. This sug-

gests that we should use Weyl spinors as our representation of the Fermi

fields. Another observed symmetry property of the weak interactions is

that weak charged particles always appear in pairs. In the lepton sec-

tor, for instance, a left-handed electron always occurs with its neutrino.

This symmetry is associated with lepton number. Hence our left-handed

particles should appear as doublets; e.g.,

L ≡
(
νL
eL

)
. (IV.3.34)

Because the neutrino is believed to be massless, there is no νR; conse-

quently, the right-handed electron must transform alone, as a singlet:

R ≡ eR (IV.3.35)

We also include a Higgs doublet in our theory,
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ϕ =

(
ϕ+

ϕ0

)
(IV.3.36)

where ϕ+, and ϕ0 are positively charged and neutral scalar fields, re-

spectively. The motivation for introducing this field is that the weak

interaction is a short range force, which must be mediated by massive

vector bosons. We can pick the vacuum state of this Higgs field so as

to cause spontaneously symmetry breakdown and thereby give mass to

these gauge bosons. We note also that an explicit mass term for the

fermion fields must be of the form

mψ̄ψ = (L̄R + R̄L). (IV.3.37)

But, since L and R transform so differently, this term cannot have the

correct transformation properties to preserve weak gauge symmetry. In

other words, a weak charge eigenstate is not a mass eigenstate. These

masses can arise, however, also through an interaction with the Higgs

field. Such a term of the form

LH−F = L̄ϕR + R̄ϕ†L (IV.3.38)

has the correct symmetry properties (definite lepton number and chiral-

ity.) A nonzero vacuum expectation value for ϕ will very clearly yield a

mass term from this equation of the form (IV.3.37) (this term will also

yield the other requisite interaction terms between ϕ and L and R.)
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We can now write down our Lagrangian. For simplicity, we will con-

sider only one lepton family, the electron and its neutrino. The treatment

is identical for additional families. Our ungauged Lagrangian is

L0 = L̄i��∂L+R̄i��∂R+(∂ϕ)†(∂ϕ)−V (ϕ†ϕ)−(m/ρ̃)(L̄ϕR+R̄ϕ†L), (IV.3.39)

where

V (ϕ†ϕ) = λ(ϕ†ϕ− ρ2)2. (IV.3.40)

We have chosen the factor multiplying the last term in anticipation of

its result after symmetry breaking. This Lagrangian is globally invariant

under SU(2); this symmetry is called weak isospin. This gauge group

has three generators which we denote by the vector t. The fields trans-

form under the fundamental representation of these generators, τ/2, the

familiar Pauli matrices:

L→ e−iω·τ/2L

R→ R (IV.3.41)

ϕ→ e−iω·τ/2ϕ

Equation (IV.3.39) also contains two global U(1) symmetries:
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L→ e−iIθL

R→ e−iθ′R (IV.3.42)

ϕ→ e−iI(θ−θ′)ϕ,

where I is the unit two by two matrix.

These two transformations can be reshuffled (i.e., into two new linear

combinations) so that we can identify one U(1) symmetry with lepton

number N, such that R and L have N = 1 and ϕ has N = 0. The other

U(1) symmetry cannot be the U(1) of electric charge, since the doublets

are not electric charge eigenstates. We call it weak hypercharge. Just

as spontaneous symmetry breaking will yield physical states of definite

mass, so too do we expect it to yield physical states that are charge

eigenstates. Consequently, we assume a linear relationship between the

eigenvalues of weak isospin, weak hypercharge and electric charge. We

make the assignments of t0, then, to obey the rule

q = t3 + t0, (IV.3.43)

where q is the electric charge generator. These considerations fix our

U(1)⊗ U(1) transformations as follows
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L→ e−iI(αt0+βN)L (t0 = 1/2, N = 1)

R→ e−i(αt0+βN)R (t0 = −1, N = 1) (IV.3.44)

ϕ→ e−iI(αt0+βN)ϕ (t0 = 1/2, N = 0)

There is no evidence that lepton number is gauged by Nature; therefore,

we take the gauge group of the Lagrangian (IV.3.39) to be the product

group SU(2) ⊗ U(1) of the two independent gauge symmetries of weak

isospin and weak hypercharge.

It is this symmetry, then, that we next gauge by introducing the

appropriate covariant derivatives and the dynamical terms for the gauge

fields. We obtain

L = L̄i��DL+ R̄i��DR + (Dµϕ)† · (Dµϕ)− V (ϕ†ϕ)− (m/ρ0)(L̄ϕR + R̄ϕ†L)

− (1/4)(GµνGµν +HµνHµν) (IV.3.45)

with

Dµ = ∂µ + igWµ · t+ ig′W µ
0 t0, (IV.3.46)

where Wµ and W µ
0 are the weak isospin and hypercharge gauge fields,

respectively, g and g′ are their coupling constants, respectively, and Gµν

and Hµν are the field tensors.
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Since there is a 1-1 correspondence between generators and gauge

fields, the linear relationship (IV.3.43) between generators implies a sim-

ilar relationship between the associated gauge fields, which we write as

Aµ = W µ
3 sin θ +W µ

0 cos θw. (IV.3.47)

We write the combination in this way so that we can easily form the

requisite orthogonal combination,

Zµ = W µ
3 cos θw −W µ

0 sin θw. (IV.3.48)

We can invert these two equations to obtain

W µ
3 = Aµ sin θw + Zµ cos θw

W µ
0 = Aµ cos θ − Zµ sin θw. (IV.3.49)

θw is called the Weinberg angle and is a free parameter to be determined

by experiment. Like Aµ, Zµ must be an electrically neutral gauge field.

Equation (IV.3.47) also implies a relationship between the coupling

constants. We can write

e = g sin θw = g′ cos θw (IV.3.50)

and
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tan θw = g′/g

e = gg′/(g2 + g′2)
1/2, (IV.3.51)

where −e is the electron charge. We can now rewrite the covariant deriva-

tive (IV.3.46) in terms of these new fields:

Dµ = ∂µ + ig(W µ
1 t1 +W µ

2 t2) + ieqAµ + ieq′Zµ, (IV.3.52)

where q′ is the generator to be associated with Zµ,

q′ = t3 cot θw − t0 tan θw. (IV.3.53)

At this point, these new definitions do not represent physical gauge

fields because they are not associated with any symmetry of the La-

grangian (IV.3.45). This will change, however, when we institute spon-

taneous symmetry breaking and choose the vacuum state so that the

electric charge generator is the only generator to remain unbroken. Such

a vacuum state solution is

ρ =

(
0

ρ̃

)
, (IV.3.54)

thereby placing the charged components of ρ in the Goldstone space and

leaving the vacuum uncharged. For small ϕ, in the physical gauge, we

have as usual
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ϕ =

(
0

ρ̃+ η(x)

)
. (IV.3.55)

Let us now examine the term in the Lagrangian that gives rise to the

gauge field masses. This is

(Dµρ)†(Dµρ) ≡ |Dµρ|2 = |{∂µ + ig[(1/2)(W µ
1 − iW

µ
2 )τ+

+ (1/2)(W µ
1 − iW

µ
2 )τ−] + ieqAµ + ieq′Zµ}

(
0

ρ̃

)
|2,

(IV.3.56)

where we have, naturally, put the generators in their fundamental repre-

sentation. In this representation, using equation (IV.3.43),

q = τ3/2 + It0 (IV.3.57)

and, in particular,

q =

1 0

0 0


for the Higgs field. This gives

qρ = 0, (IV.3.58)

or, in other words, the electric charge generator annihilates the vacuum,

as planned. Correspondingly, the photon remains massless. The other
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gauge fields, however, do not escape the Higgs mechanism. Writing out

equation (IV.3.56) yields the explicit mass terms for these fields

|Dµρ|2 = (1/2)g2ρ̃2
[
W µ

+W
∗
µ− + (1/2)(cos2 θw)Z

µZµ

]
, (IV.3.59)

where

W µ
± = (1/

√
2)(W µ

1 ± iW
µ
2 ) (IV.3.60)

is a complex (electrically charged) gauge field. These particles have been

observed and their measured masses are in good agreement with these

mass terms when the experimentally determined values of θw and the

coupling constants are used to calculate them.

Writing out the other terms in the Lagrangian (IV.3.45) in terms of

these fields straight-forwardly yields the interactions between the fields

and, as discussed above, the mass terms for the electrons.

IV.4 Summary and Implications

In the first section of this chapter we discovered that for field theories a

symmetry of Nature that is not a physical symmetry is equivalent to an

invariance of the solutions to the equations of motion, or, in other words,

an invariance of the physical field configurations. In a quantum field

theory the physical field configurations correspond to the physical on-

shell S-matrix elements; a physical symmetry, or a symmetry on physical

state space, is in this case a symmetry on the Hilbert space constructed

from the state vectors (called the Fock space.) This latter symmetry is
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expressible in terms of unitary transformations of the operators which

act in this space; namely, the quantized fields.

We also found that when there existed an invariance of the Action,

then there was correspondingly a symmetry of Nature and a symmetry

on physical state space. This then leads to the existence of a continuity

equation; i.e., a conserved current. In local gauge theories, it is the cur-

rent associated with gauge symmetry which couples to the force carrying

particle, the gauge boson. It is this coupling to a conserved current which

insures that the gauge boson propagator can be made finite through a

simple rescaling: that is, it insures charge renormalization. (It also in-

sures that no radiative corrections to this propagator can shift its pole

from k2 = 0; i.e., it cannot gain a mass.) Let us consider spontaneous

symmetry breaking in terms of this symmetry formalism. It is, of course,

a symmetry of state space that is broken when the ground state of a

theory becomes degenerate. The solutions to the equation of motion, or,

equivalently, the physical on-shell S-matrix elements, remain invariant

under the transformations of the symmetry group. (This is why, in cer-

tain gauges, unphysical particle states may appear, but do not contribute

when physical quantities are calculated.)

We need to note here that, although the mechanism of spontaneous

symmetry breaking has been used very successfully (such as in the Weinberg-

Salam theory), it relies heavily on the ad hoc insertion into the theory of

(unobserved) fundamental particles.

Superconductivity is the closest example of spontaneous symmetry

breaking in another field. In fact, in the phenomenological Landau-

Ginzberg model, a potential which is identical in form to the Higgs field

potential is added to the Lagrangian. In this case, the role of “fundamen-
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tal scalars,” however, is taken by bound Cooper pairs of electrons (|ϕ|2

is the probability density for these Cooper pairs.)

Needless to say, there have been attempts to find such bound states

of known fermions to take the role of the Higgs field, but no such at-

tempts have been successful.68 One attempt in another area, however,

has been successful. In the partially conserved axial current (PCAC)

hypothesis, one assumes a spontaneous breakdown of chiral symmetry

[SU(2)]A. Here, the (unusually light scalar) pions are taken as the re-

sulting Goldstone bosons (since this is not a gauged symmetry) in an

idealized massless limit. So here we have a global approximate sponta-

neously broken symmetry.

This example of PCAC highlights the difference between an approx-

imate symmetry and a broken one. Chiral symmetry is a global symme-

try of the fermion Lagrangian only in the massless limit. It is further

assumed that this approximate symmetry (since fermions are not mass-

less and neither are the pions) is spontaneously broken. An approximate

symmetry can be considered in some reasonable limit to yield a perfect

symmetry; hence, symmetry-conservation formalism can be invoked (i.e.,

one can define a partially conserved current.) A broken symmetry, how-

ever, has global effects (existence of Goldstone or Higgs bosons) which

cannot be removed through small approximations.

In the Weinberg-Salam model a SU(2) ⊗ (1) symmetry is sponta-

neously broken, yielding a perfect U(1) symmetry (of Q.E.D.) and a

broken SU(2) symmetry (to be associated with the weak interactions.)

The “unified” theory, even after symmetry breaking, is still renormaliz-

able, and this fact relies on the special feature of spontaneous symmetry

breaking: that there still remains the (hidden) non-implementable gauge
68This is called dynamical symmetry breaking.
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symmetry of the original product group. However, this spontaneous sym-

metry breaking allows one to consider the U(1) symmetry as associated

with a separate interaction; i.e., the theory of Q.E.D. This theory is

renormalizable because it is based on an unbroken gauge symmetry. On

the other hand, when one tries to consider the SU(2) symmetry as being

associated with a separate interaction, one finds a non-renormalizable

theory—the theory of the weak interactions. If we accept the Weinberg-

Salam model, then, there is no renormalizable theory describing sepa-

rately the weak interaction.

Renormalizability is a requirement of consistency for quantum field

theories. If a quantum field theory is non-renormalizable, it yields infini-

ties for some physical results; results which are not merely wrong, but

which are senseless. These physical results are interactions cross-sections;

therefore, this indicates some inability to describe the weak interaction in

causal terms. In fact, we find here an example of our general symmetry

formalism where there exists a fundamental broken symmetry: we label

the theory of the weak interactions as an essentially incomplete theory.

We find, then, a precedent for our description of quantum mechan-

ics as an essentially incomplete theory. We have also seen in detail how

in quantum field theory such an essentially incomplete theory results.

We do not, however, expect the mechanism or methods of spontaneous

symmetry breaking to be directly applicable to the solution in the non-

relativistic quantum domain, since one-particle quantum mechanics is a

much different theory than quantum field theories. In addition, spon-

taneous symmetry breaking is not possible in non-infinite systems: in

quantum mechanics degenerate ground states overlap (they do not lie in

distinct Hilbert spaces.)
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V Quantum Mechanics as a Broken Symme-

try

V.1 A Broken Symmetry Ontology

Let us now summarize and formally propose what we will call a broken

symmetry ontology. We have established symmetry as a useful funda-

mental and primitive notion in physics. We propose, however, that in

certain ontological domains the fundamental symmetry present is a bro-

ken symmetry. This broken symmetry is just as fundamental and primi-

tive a notion as that of symmetry. There must be definite epistemological

consequences for grounding our physics in these notions, and we have in

fact taken note of these in Chapter II. The existence of a fundamental

symmetry (“an invariant universal element of form”) underlies our con-

sistent application of the causal principle and our concepts of scientific

objects. A broken symmetry (“a lacking invariant universal element of

form”) leads to an impaired use of the causal principle and a confused

concept of object.

In terms of an analysis of symmetry, we found physical principles

which parallel our epistemological analysis. In those ontological domains

where there exists a fundamental symmetry, physical systems are ana-

lyzable in a heterogeneous manner. This leads to the general principle of

symmetry and a generalized symmetry-conservation theorem. The prin-

ciple of symmetry, which states that the symmetry of an isolated physical

system either increases or remains the same, as it evolves according to

the laws of Nature, was shown to be essentially a translation of the causal

principle in terms of the notion of symmetry. The generalized symmetry

conservation theorem, which states that for every symmetry of Nature
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there is a corresponding conserved quantity, is directly related to the con-

sistency of the concept of a scientific object, since conserved quantities

are intimately related to the consistent definition of objects.

In an ontological domain where there exists a broken symmetry we

are forced to analyze physical systems in a non-heterogeneous manner.

In non-heterogeneous systems, the principle of symmetry is inapplicable

and the general symmetry-conservation theorem is invalid.

From either an epistemological or a physical symmetry based anal-

ysis, we see, then, that in an ontological domain founded on a broken

symmetry, certain elements “normally” present in a description of our

physics are lacking. We can say that our description in this domain is

incomplete, or, to be more precise, it is essentially incomplete, since this

description cannot be “completed.” In particular, since a physical descrip-

tion is given in terms of physical states which are in turn provided by

physical theory, we can say that theory in this domain admits of incom-

plete state descriptions. This broken symmetry ontology is diagrammed

in the figure below.
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Figure 1: *
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V.2 Separability

We have seen from Jarrett’s work that quantum mechanics is essentially

incomplete. More specifically, we can say that its state descriptions are

incomplete. We can go further and ask in what way these states are

incomplete.

Howard (1985)69 has asked this question and has come to the con-

clusion that quantum states are incomplete because they do not possess

the property of “separability.” Separability, or the separability principle,

states that spatially separated systems possess separate real states, which

is to say that there always exists separate probability measures for spa-

tially separated systems.

Howard showed that he could decompose Jarrett’s strong locality (the

condition used in deriving the general Bell inequalities) into Einstein lo-

cality and separability, thereby demonstrating an equivalence between

Jarrett completeness and separability. Given this demonstrated equiv-

alence between separability and Jarrett completeness, we can then say

that non-separability is a feature of quantum mechanics, which is the

specific way in which quantum mechanics is incomplete. This means

that for some previously interacting systems, such as in the EPR-Bohm

setup, there are distinguishable (separated in space or time) systems (the

two electrons) which can not be characterized as having their own set of

intrinsic properties—a characteristic of spatially or temporally separated

systems that we take for granted in classical mechanics.

Howard also pointed out that classical field theories, in particular

general relativity, are explicitly separable, since their fundamental struc-

ture is well-defined at every point in the space-time manifold; that is,
69See also Howard (1985b).
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they define a separate real state for every space-time point. This is only

true, however, for the free-field versions of such theories. In particular,

in general relativity the field is not well-defined at those points where

there exists massive particles. Similarly, the electromagnetic field is well-

defined at every space-time point for the free-field, but not at those points

where there exists its sources, namely charges.

Also, we should note, quantum field theories, which are expressed in

terms of creation and annihilation operators over the space-time man-

ifold, clearly do not yield a field description well-defined at individual

space-time points. The most successful formalism for describing quan-

tum field theories, namely S-matrix theory, even more explicitly gives up

the notion of a field defined at individual space-time points. Here, such

a description is only available in the remote past or future with respect

to some interaction.

V.3 Broken Dilation Invariance

We want, now, to fit quantum mechanics into our broken symmetry on-

tology. Our motivation for this is that we have found that quantum

mechanics is an essentially incomplete theory, and that there is an im-

paired use of the causal principle (due to the unobservability of ψ) and

a confused concept of object (the wave-particle dualism.) There obvi-

ously must be a fundamental broken symmetry upon which the quantum

ontology is based. This broken symmetry must explain the strange sort

of non-locality that is found in the EPR argument, and, in particular,

must be related to the principle of separability. Hopefully, also this bro-

ken symmetry could be related to the formalism of quantum mechanics,

most likely in one of its semiclassical formulations.
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We propose that broken dilation invariance is at the foundations of

the quantum domain. As we pointed out in the last chapter, Weyl’s

original attempt to give a fundamental role to dilation invariance was re-

jected because it was seen not to be a fundamental symmetry of Nature.

This was mainly because in the quantum domain there is a preferred

scale determined by the fundamental constant ℏ. Moreover, this fun-

damental scale results from the basic feature of the quantum domain,

namely quantization. In particular, massive particles have associated a

de-Broglie wavelength. To be sure, the quantum aspect of Nature is to

be found in the ontologically superior theory of quantum field theory.

In fact, there, any perfect or approximate dilation symmetry present in

the classical Lagrangian is always broken when the field is quantized and

renormalized, since, once again, this fundamental feature always sets a

preferred scale. We also found that, at the classical level, dilation in-

variance was associated with masslessness (the absence of dimensionful

parameters.) The ultimate origin of mass is to be found most likely

in the fundamental aspects of quantum effects (such as the phenomena

of dimensional transmutation, where quantum effects explicitly provide

a mass scale, and which is believed to be responsible for the mass of

quarks.) However the absence of dilation invariance is to be expressed,

the fact that this is a basic aspect of our world is to be directly attributed

to the basic quantum aspect of physics. This aspect is, naturally, to be

found most clearly in one-particle quantum mechanics where we study

individual quantum systems. However, being a fundamental feature of

the world itself, it expresses itself at the classical level by the existence of

objects of definite mass and states of definite charge. Hence, we expect

dilation invariance to be explicit in classical physics only where these
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effects can be avoided, in particular, in the free-field versions of classical

field theories. In fact, these theories, such as free electromagnetism, are

expressly dilation symmetric.

Now we can make direct connection with our observations about sepa-

rability in physics. We found that free classical field theories are explicitly

separable because they are well-defined at every space-time point. We

see that separability is a property to be ascribed to a theory if it pos-

sesses dilation invariance, since if it assigns definite properties to every

point in the space-time manifold, these properties cannot be affected by

a relative change of scale, which keeps each point (each system) in the

same relation to every other.

Conversely, a theory which is manifestly not dilation symmetric, such

as quantum mechanics, will yield state descriptions which are not sepa-

rable. In this case systems individuated only by a space-time separation

do not possess individual sets of properties, so a dilation transformation

is not well-defined.

V.4 Zeeman Causality and Non-Heterogeneity

To understand the strange non-locality found in the Bell-EPR analysis,

in which there is not a violation of Einstein locality (i.e., signals are not

transmitted superluminally,) but, instead, there is some sort of “spooky

action at a distance,”70 consider the analysis of causality presented by

Zeeman (1964).

Zeeman defined the group of causal automorphisms, or, more simply,

the causal group, as those one-to-one mappings on Minkowski space, M ,

which preserve the partial ordering on M , x < y, where an event at x
70Coined by Einstein. From Born (1971).
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can influence an event at y (i.e., x are those points in the backward light

cone of y.) He then showed that this causal group is equivalent to the

group consisting of the Poincaré transformations and the dilations.71

Other researchers have shown that by replacing Zeeman’s condition

of maintaining the partial ordering with a condition for preserving the

magnitude of the velocity of light, and thereby relaxing Zeeman’s demand

Correction: “the
norms of timelike
vectors,”

of causality, one obtains an equivalence just with the Poincaré group.72

And, of course, the Poincaré group is usually obtained by physicists by

Williams further
demonstrated that
the Poincaré group
and the dilations
preserves the
norms of null cones
(which is
equivalent to
preserving the
speed of light), and
that the timelike
norm preserving
group is a proper
subgroup of this
latter group.

instituting the principle of relativity.

We see, then, that a general condition of causality—which we shall call

“Zeeman causality”—implies a larger space-time symmetry group than

that required by simple Einstein causality. This larger space-time sym-

metry group includes the dilations. Given that the quantum mechanical

EPR states manifest the broken dilation invariance found in quantum

mechanics, we expect them to manifestly violate Zeeman causality. Con-

sequently, we can identify that property of a theory, or equivalently of

the states descriptions it yields, such that it is Zeeman causal, with the

property called strong locality (so called by Jarrett.) To be clear, let us

call this property “Zeeman locality” and a theory which possesses Zee-

man locality “Zeeman local.” The type of non-locality found in quantum

mechanics is then a violation of Zeeman locality but not of Einstein lo-

cality.

This violation of Zeeman causality does not entail superluminal trans-

mission of information, nor does it violate our fundamental notion of

causality (as it cannot, by our discussion of Chapter II) in such a way to

create causal paradoxes. Zeeman causality is, however, not a generalized
71It also contains the discrete symmetry of spatial inversion.
72See, for instance, Williams (1973).
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form of causality, but the actual form of causality found in a strictly

classical (no quantum effects) world. The way in which the causal prin-

ciple is restricted in the quantum domain is by its restriction to Einstein

causality.

Our broken symmetry ontology predicts that quantum mechanics will

describe physical systems with a non-heterogeneous logical structure. We

now examine this possibility in the context of the Bohm-EPR experiment.

Recall that non-heterogeneous systems contain equivalence relations

connecting the cause and effect subsystems. In a consideration of the

Bohm-EPR setup as a means of measuring the spin of a remote elec-

tron (i.e., one electron’s spin is measured and the other’s is inferred), we

can consider the measured electron as being the cause subsystem and the

remote electron as the effect subsystem. We know from our previous anal-

ysis that this causal connection cannot be an Einstein causal one; that

is, there is no causal relation between the two systems as usually derived

from special relativistic considerations. Rather, we can interpret the cor-

relations (as they are usually referred to) between measurements made

simultaneously on both electrons, as due to these connecting equivalence

relations. These connecting equivalence relations, then, account for the

stochastic interdependence of the outcomes of measurements made on

the two electrons.

The “confused” concept of object offered in quantum mechanics can

also be understood in terms of the EPR setup. In particular, we can dis-

cuss the wave-particle dualism by examining the original EPR argument,

in which position and momentum measurements on two previously inter-

acting particles prepared in a zero momentum state are considered. Here,

there are the same correlations, and correspondingly the same connecting
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equivalence relations, this time connecting the properties of position and

momentum (instead of spin.) We can, again, consider making a measure-

ment on one particle to “determine” the properties of the other remote

particle. Making a position measurement on one particle then determines

the position of the other particle, and, hence, localizes it and determines

it as having the property of being a particle. Making a momentum mea-

surement, instead, on the first particle would determine the momentum

of the other particle but not its position, and thereby determine it as

having a wave property. Now, the absence of dilation invariance as a

symmetry of these physical states (as required by our broken symmetry

ontology) prohibits the assigning of certain unique conserved properties

to the second particle. If one considers the solutions to the equation of

motion as saying, for instance, that particle one will always have a mo-

mentum opposite to particle two, or, that particle one will always have a

position the same distance from some origin as particle two, then these

solutions are related by a symmetry (just as the solutions to the equations

of motion are still gauge-symmetric in the Weinberg-Salam model after

spontaneous symmetry breaking.) We can use a dilation transformation

to reduce a wave solution to a point or the opposite transformation to

expand a particle solution into a wave solution. Of course, these trans-

formations are physically non-implementable, since dilation invariance is

not a symmetry of the physical states.

More generally, since in an analysis of measurement in quantum me-

chanics one can take the EPR setup as the simplest type of measuring

device—using one quantum system to measure another—a complete the-

ory of measurement, in which a quantum mechanical description would

be given for a classical measuring device, should be expressible similarly
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in terms of these connecting equivalence relations. We will not pursue

such a program here.

V.5 Reevaluation of the Quantum Potential Approach

An equivalence between the eikonal equation of geometrical optics and

the Hamilton-Jacobi equation, where the phase of the wave motion is

equivalent to S, was first realized by Hamilton. In fact, it was this optical-

mechanical analogy which lead Schrödinger to his equation.73

This connection can be demonstrated by showing that the Schrödinger

equation reduces to the Hamilton-Jacobi equation in the short-wavelength

limit, thereby running Schrödinger’s argument backwards. The basis of

the optical-mechanical analogy is the equating of the phase to S/ℏ, which

leads to

ψ = eiS/ℏ. (V.5.1)

Substituting this into Schrödinger’s equation, we find

∂S/∂t+ [(∇S)2/2m] + V = [(iℏ)/(2m)]∇2S. (V.5.2)

This is the Hamilton-Jacobi equation if the term on the right hand side

can be neglected. This is true if

ℏ∇2S << (∇S)2 (V.5.3)
73See Lanczos (1986), Section 8.8, and Goldstein (1980), Section 10-8, for a discus-

sion.
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or

ℏ∇ · p << p2, (V.5.4)

since p = ∇S. Substituting the de-Broglie wavelength λ = h/p, we find

(1/p)∇ · p << 2π/λ. (V.5.5)

The condition (V.5.5) states that classical mechanics is the geometrical

optics limit of quantum mechanics, since the wavelength must be small

compared to the change in momentum of the particle, or, in other words,

the potential should not vary greatly over a wavelength.

Bohm’s and the stochastic approaches, in addition to examining the

possibility when no approximation like that indicated by the relation

(V.5.5) is made, also assume that the ψ-field should be written in terms

of two independent functions. The additional function specifies an inde-

pendent variation of the norm of ψ.

One way to see this generalization of Bohm is to take equation (V.5.1)

and let

S → S − iℏ lnR, (V.5.6)

so that

ψ = ReiS/ℏ. (V.5.7)
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In fact, if we apply the replacement (V.5.6) to equation (V.5.2) and we

assume the continuity equation found by Bohm:

(∂p/∂t) +∇ · (p∇S/m) = 0, (V.5.8)

which can be written as

(∂ lnR/∂t) + (1/m)∇S · ∇ lnR = −(1/2m)∇2S, (V.5.9)

then we find

(∂S/∂t) + [(∇S)2/2m] + V − (ℏ2/2m)(∇2R/R) = 0, (V.5.10)

which is just the modified Hamilton-Jacobi equation found by Bohm.

We see, therefore, that the existence of the quantum potential which

is already a function the norm of ψ, can be directly attributed to a

modification of the Action, whereby a term proportional to the norm

is added to it. This term then sets a preferred scale proportional to ℏ,

which consequently breaks dilation invariance. Since the norm of ψ can

vary locally, this preferred scale can also vary from point to point. We

can interpret Q, the quantum potential, as the connection established by

these local variations. In fact, if there were no such local variations, Q

would be zero; there would then be no locally preferred scale.

We see that the term added to the Action is not added as the usual

interaction terms are added to the Lagrangian in field theory. There,
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such terms indicate an interaction at a space-time point: at the same

time, these terms arise naturally out of considerations of maintaining a

symmetry of the Action. Consequently, we can attribute the “non-local”

aspect of this potential to the explicit symmetry breaking manner in

which the replacement (V.5.6) is made.

We offer this example not as support for the quantum potential ap-

proach as a preferred interpretation, but, rather, as an example of how

we can understand, in terms of our broken symmetry ontology, the at

least partial success of describing quantum mechanics in this particular

manner.

V.6 Broken Gauge Symmetry and its Relation to

Broken Dilation Symmetry

We already indicated how the theory of the weak interactions can be

understood as an essentially incomplete theory. Now that we have for-

mally presented our broken-symmetry ontology, we can summarize how

this theory fits this ontology.

The symmetry broken in this case is a gauge symmetry. In particular,

the broken symmetry on which the theory of the weak interactions is

based is a broken SU(2) symmetry. This results in a non-heterogeneous

structure in which the symmetry transformations of SU(2) are based

on the connecting equivalence relations. The way in which causality is

restricted here is that for certain interactions described by the theory one

finds infinite cross sections and non-unitary results.74

We have not yet clearly understood in what sense one finds a con-

fused concept of object in this domain. We take note, though, that weak
74See, for instance, Leader and Predazzi (1982) for a discussion of the problems of

an independent theory of the weak interactions.

- 199 -



V QUANTUM MECHANICS AS A BROKEN SYMMETRY

charge eigenstates are definite states of chirality; hence, there is an in-

timate connection between the weak interaction and chiral symmetry.

We speculate, therefore, that since anomalies (which are still not clearly

understood) can easily be interpreted as a confusion in the concept of

object in quantum field theory, chiral anomalies are due to the existence

of the fundamental broken symmetry underlying the weak interaction.75

Finally, one may ask how quantum mechanics and the theory of the

weak interactions can be based on similar ontologies and yet be such dif-

ferent theories and with different kinds of causal restrictions. Again, we

only speculate that modern-version Kaluza-Klein theories will be success-

ful in describing gauge symmetries as being equivalent to space-time sym-

metries in compactified dimensions. In this case, dilation and gauge sym-

metry (or its equivalent replacement) would be put on an equal footing—

both would be space-time symmetries. One could further imagine that

one could find an expanded group of causal automorphisms over this en-

larged space-time, and a correspondingly enlarged generating group of

space-time transformations. A broken gauge symmetry could then cor-

respond to a restricted causal structure in the same way that broken

dilation symmetry does.
75Broken dilation and conformal invariance in quantum field theory also leads to

anomalies.
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